Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 257-265.

This article presents Large Eddy Simulations (LES) of a realistic aeronautical combustor device: the chamber CTA1 designed by TURBOMECA. Under nominal operating conditions, experiments show hot spots observed on the combustor walls, in the vicinity of the injectors. These high temperature regions disappear when modifying the fuel stream equivalence ratio.

In order to account for detailed chemistry effects within LES, the numerical simulation uses the recently developed turbulent combustion model F-TACLES (Filtered TAbulated Chemistry for LES). The principle of this model is first to generate a lookup table where thermochemical variables are computed from a set of filtered laminar unstrained premixed flamelets. To model the interactions between the flame and the turbulence at the subgrid scale, a flame wrinkling analytical model is introduced and the Filtered Density Function (FDF) of the mixture fraction is modeled by a β function. Filtered thermochemical quantities are stored as a function of three coordinates: the filtered progress variable, the filtered mixture fraction and the mixture fraction subgrid scale variance. The chemical lookup table is then coupled with the LES using a mathematical formalism that ensures an accurate prediction of the flame dynamics. The numerical simulation of the CTA1 chamber with the F-TACLES turbulent combustion model reproduces fairly the temperature fields observed in experiments. In particular the influence of the fuel stream equivalence ratio on the flame position is well captured.

Publié le :
DOI : 10.1016/j.crme.2012.10.021
Mots clés : Turbulent combustion modeling, Large Eddy Simulation, Tabulated chemistry
Pierre Auzillon 1, 2 ; Eléonore Riber 3 ; Laurent Y.M. Gicquel 3 ; Olivier Gicquel 1, 2 ; Nasser Darabiha 1, 2 ; Denis Veynante 1, 2 ; Benoît Fiorina 1, 2

1 CNRS, UPR 288, Laboratoire dʼénergétique moléculaire et macroscopique, combustion (EM2C), grande voie des vignes, 92290 Châtenay-Malabry, France
2 École centrale Paris, grande voie des vignes, 92290 Châtenay-Malabry, France
3 CERFACS, CFD Team, 42, avenue G. Coriolis, 31057 Toulouse cedex 01, France
@article{CRMECA_2013__341_1-2_257_0,
     author = {Pierre Auzillon and El\'eonore Riber and Laurent Y.M. Gicquel and Olivier Gicquel and Nasser Darabiha and Denis Veynante and Beno{\^\i}t Fiorina},
     title = {Numerical investigation of a helicopter combustion chamber using {LES} and tabulated chemistry},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {257--265},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.021},
     language = {en},
}
TY  - JOUR
AU  - Pierre Auzillon
AU  - Eléonore Riber
AU  - Laurent Y.M. Gicquel
AU  - Olivier Gicquel
AU  - Nasser Darabiha
AU  - Denis Veynante
AU  - Benoît Fiorina
TI  - Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 257
EP  - 265
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.021
LA  - en
ID  - CRMECA_2013__341_1-2_257_0
ER  - 
%0 Journal Article
%A Pierre Auzillon
%A Eléonore Riber
%A Laurent Y.M. Gicquel
%A Olivier Gicquel
%A Nasser Darabiha
%A Denis Veynante
%A Benoît Fiorina
%T Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
%J Comptes Rendus. Mécanique
%D 2013
%P 257-265
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.021
%G en
%F CRMECA_2013__341_1-2_257_0
Pierre Auzillon; Eléonore Riber; Laurent Y.M. Gicquel; Olivier Gicquel; Nasser Darabiha; Denis Veynante; Benoît Fiorina. Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 257-265. doi : 10.1016/j.crme.2012.10.021. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.021/

[1] A. Unal; Y. Hu; M. Chang; M.T. Odman; A. Russell Airport-related emissions and impacts on air quality: Application to the Atlanta International Airport, Atmos. Environ., Volume 39 (2005) no. 3, pp. 5787-5798

[2] U. Stopper; M. Aigner; H. Ax; W. Meier; R. Sadanandan; M. Stöhr; A. Bonaldo PIV, 2D-LIF and 1D-raman measurements of flow field, composition and temperature in premixed gas turbine flames, Exp. Therm. Fluid Sci., Volume 34 (2010) no. 3, pp. 396-403

[3] M. Boileau; G. Staffelbach; B. Cuenot; T. Poinsot; C. Berat LES of an ignition sequence in a gas turbine engine, Combust. Flame, Volume 154 (2008) no. 1–2, pp. 2-22

[4] M. Ihme; H. Pitsch Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids, Volume 20 (2008) no. 5, p. 055110 http://link.aip.org/link/?PHF/20/055110/1 | DOI

[5] W.-W. Kim; S. Menon; H.C. Mongia Large-eddy simulation of a gas turbine combustor flow, Combust. Sci. Technol., Volume 143 (1999), pp. 25-62

[6] U. Maas; S. Pope Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992), pp. 239-264

[7] O. Gicquel; N. Darabiha; D. Thévenin Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000), pp. 1901-1908

[8] B. Fiorina; R. Baron; O. Gicquel; D. Thévenin; S. Carpentier; N. Darabiha Modelling non-adiabatic partially-premixed flames using flame prolongation of ILDM, Combust. Theory Model., Volume 7 (2003), pp. 449-470

[9] J. van Oijen; L.P.H. de Goey A numerical study of confined triple flames using a flamelet-generated manifold, Combust. Theory Model., Volume 8 (2004), pp. 141-163

[10] P. Domingo; L. Vervisch; D. Veynante Large-eddy simulation of a lifted methane jet flame in a vitiated coflow, Combust. Flame, Volume 152 (2008) no. 3, pp. 415-432

[11] B. Fiorina; R. Vicquelin; P. Auzillon; N. Darabiha; O. Gicquel; D. Veynante A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, Volume 157 (2010), pp. 465-475

[12] G. Kuenne; A. Ketelheun; J. Janicka LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry, Combust. Flame, Volume 158 (2011) no. 9, pp. 1750-1767

[13] P. Auzillon; O. Gicquel; N. Darabiha; D. Veynante; B. Fiorina A filtered tabulated chemistry model for LES of stratified flames, Combust. Flame, Volume 159 (2012) no. 8, pp. 2704-2717

[14] P. Auzillon; B. Fiorina; R. Vicquelin; N. Darabiha; O. Gicquel; D. Veynante Modeling chemical flame structure and combustion dynamics in LES, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 1331-1338

[15] B. Fiorina; O. Gicquel; L. Vervisch; S. Carpentier; N. Darabiha Approximating the chemical structure of partially-premixed and diffusion counterflow flames using FPI flamelet tabulation, Combust. Flame, Volume 140 (2005) no. 3, pp. 147-160

[16] CRC, Handbook of aviation fuel properties, Tech. Rep. 635, CRC, 3650 MANSELL ROAD SUITE 140 ALPHARETTA, GA 30022, 2004.

[17] Y. Mizobuchi; S. Tachibana; J. Shinjo; S. Ogawa; T. Takeno A numerical analysis on structure of turbulent hydrogen jet lifted flame, The Proceedings of the Twenty-Ninth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 2002, pp. 2009-2015

[18] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R. T. Edwards, Inc., 2005

[19] http://www.cerfacs.fr/cfd/avbpcode.php http://www.cerfacs.fr/cfd/cfdpublications.htm

[20] R. Vicquelin; B. Fiorina; S. Payet; N. Darabiha; O. Gicquel Coupling tabulated chemistry with compressible CFD solvers, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 1481-1488

[21] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371

[22] F. Ducros, F. Nicoud, T. Poinsot, Wall-adapting local eddy-viscosity models for simulations in complex geometries, in: E.B.M.J. (Ed.), ICFD, 1998, pp. 293–300.

[23] J. Luche, Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism, Ph.D. thesis.

[24] F. Charlette; C. Meneveau; D. Veynante A power-law flame wrinkling model for LES of premixed turbulent combustion, Part I: non-dynamic formulation, Combust. Flame, Volume 131 (2002) no. 1/2, pp. 159-180

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows

Ronan Vicquelin; Benoît Fiorina; Nasser Darabiha; ...

C. R. Méca (2009)


Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers

Guillaume Lecocq; Ignacio Hernández; Damien Poitou; ...

C. R. Méca (2013)


Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame

Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot

C. R. Méca (2013)