Comptes Rendus
A suitable parametrization to simulate slug flows with the Volume-Of-Fluid method
Comptes Rendus. Mécanique, Volume 340 (2012) no. 6, pp. 411-419.

Diffuse–interface methods, such as the Volume-Of-Fluid method, are often used to simulate complex multiphase flows even if they require significant computation time. Moreover, it can be difficult to simulate some particular two-phase flows such as slug flows with thin liquid films. Suitable parametrization is necessary to provide accuracy and computation speed. Based on a numerical study of slug flows in capillary tubes, we show that it is not trivial to optimize the parametrization of these methods. Some simulation problems described in the literature are directly related to a poor model parametrization, such as an unsuitable discretization scheme or too large time steps. The weak influence of the mesh irregularity is also highlighted. It is shown how to capture accurately thin liquid films with reasonably low computation times.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.01.003
Mots clés : Computational fluid mechanics, Taylor flow, Slug flow, CFD, Thin film, VOF method
Pierre Horgue 1, 2 ; Frédéric Augier 2 ; Michel Quintard 1, 3 ; Marc Prat 1, 3

1 Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse), allée Camille Soula, 31400 Toulouse, France
2 IFP Energies nouvelles, rond-point de lʼéchangeur de Solaize, BP 3, 69360 Solaize, France
3 CNRS; IMFT; 31400 Toulouse, France
@article{CRMECA_2012__340_6_411_0,
     author = {Pierre Horgue and Fr\'ed\'eric Augier and Michel Quintard and Marc Prat},
     title = {A suitable parametrization to simulate slug flows with the {Volume-Of-Fluid} method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {411--419},
     publisher = {Elsevier},
     volume = {340},
     number = {6},
     year = {2012},
     doi = {10.1016/j.crme.2012.01.003},
     language = {en},
}
TY  - JOUR
AU  - Pierre Horgue
AU  - Frédéric Augier
AU  - Michel Quintard
AU  - Marc Prat
TI  - A suitable parametrization to simulate slug flows with the Volume-Of-Fluid method
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 411
EP  - 419
VL  - 340
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2012.01.003
LA  - en
ID  - CRMECA_2012__340_6_411_0
ER  - 
%0 Journal Article
%A Pierre Horgue
%A Frédéric Augier
%A Michel Quintard
%A Marc Prat
%T A suitable parametrization to simulate slug flows with the Volume-Of-Fluid method
%J Comptes Rendus. Mécanique
%D 2012
%P 411-419
%V 340
%N 6
%I Elsevier
%R 10.1016/j.crme.2012.01.003
%G en
%F CRMECA_2012__340_6_411_0
Pierre Horgue; Frédéric Augier; Michel Quintard; Marc Prat. A suitable parametrization to simulate slug flows with the Volume-Of-Fluid method. Comptes Rendus. Mécanique, Volume 340 (2012) no. 6, pp. 411-419. doi : 10.1016/j.crme.2012.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.01.003/

[1] K. Triplett; S. Ghiaasiaan; S. Abdel-Khalik; D. Sadowski Gas-liquid two-phase flow in microchannels, Part 1: Two-phase flow patterns, Int. J. of Multiphase Flow, Volume 25 (1999) no. 3, pp. 377-394

[2] R. Gupta; D. Fletcher; B. Haynes On the cfd modelling of Taylor flow in microchannels, Chem. Eng. Sci., Volume 64 (2009), pp. 2941-2950

[3] T. Taha; Z.F. Cui Hydrodynamics of slug flows inside capillaries, Chem. Eng. Sci., Volume 59 (2004) no. 6, pp. 1181-1190

[4] M. Akbar; S.M. Ghiaasiaan Simulation of Taylor flow in capillaries based on the volume-of-fluid technique, Ind. Eng. Chem. Res., Volume 45 (2006), pp. 5396-5403

[5] D. Qian; A. Lawal Numerical study on gas and liquid slgus for Taylor flow in a t-junction microchannel, Chem. Eng. Sci., Volume 61 (2006) no. 23, pp. 7609-7625

[6] V. Kumar; S. Vashisth; Y. Hoarau; K. Nigam Slug flow in curved microreactors: Hydrodynamic study, Chem. Eng. Sci., Volume 62 (2007), pp. 7494-7504

[7] M. Kashid; D. Rivas; D. Agar; D. Turek On the hydrodynamics of liquid–liquid slug flow capillary microreactors, Asia–Pac. J. Chem. Eng., Volume 3 (2008) no. 2, pp. 151-160

[8] A. Carlson, P. Kudinov, C. Narayanan, Prediction of two-phase flow in small tubes: a systematic comparison of state-of-art cmfd codes, in: 5th European Thermal-Sciences Conference, 2008.

[9] K. Fukagata; N. Kasagi; P. Ua-arayaporn; T. Himeno Numerical simulation of gas–liquid two-phase flow and convective heat transfer in a micro tube, Int. J. Heat Fluid Flow, Volume 28 (2007) no. 1, pp. 72-82

[10] Z. Yu; O. Hemminger; L.-S. Fans Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels, Chem. Eng. Sci., Volume 62 (2007), pp. 7172-7183

[11] Q. He; N. Kasagi Phase-field simulation of small capillary-number two-phase flow in a microtube, Flow Dynamics Research, Volume 40 (2008) no. 7–8, pp. 497-509

[12] D. Harvie; M. Rudman An analysis of parasitic current generation in volume of fluid simulations, Appl. Math. Model., Volume 30 (2006) no. 10, pp. 1056-1066

[13] J.U. Brackbill; D. Kothe; C. Zemach A continuum method for modelling surface tension, J. Comput. Phys., Volume 100 (1992), pp. 335-354

[14] B. Leonard, S. Mokhtari, ULTRA-SHARP nonoscillatory convection schemes of high-speed steady multidimensional flow, in: NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center, 1990.

[15] S. Muzaferija, M. Peric, P. Sames, T. Schellin, A two-fluid Navier–Stokes solver to simulate water entry, in: Proc. 22nd Symposium on Naval Hydrodynamics, 1998.

[16] O. Ubbink; R.I. Issa A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., Volume 153 (1999), pp. 26-50

[17] D. Youngs, Time-dependent multi-material flow with large distortion, in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics, Academic Press, London.

[18] B.P. Leonard The ultimate conservative difference scheme applied to unsteady one-dimensional advection, Comput. Meth. Appl. Mech. Eng., Volume 88 (1991), pp. 17-74

[19] T. Waclawczyk; T. Koronowicz Comparison of CICSAM and HRIC high-resolution schemes for interface capturing, J. Theor. Appl. Mech., Volume 46 (2008), pp. 325-345

[20] F. Bretherton The motion of long bubbles in tubes, J. Fluid. Mech., Volume 10 (1961), pp. 166-188

[21] D. Lasseux, Caractérisation expérimentale, analytique et numérique dʼun film dynamique lors du drainage dʼun capillaire, Ph.D. thesis, Université de Bordeaux I, 1990.

[22] M. Kreutzer; F. Kapteijn; J. Moulijn; C. Kleinj; J. Heiszwolf Inertial and interfacial effects on pressure drop of Taylor flow in capillaries, AICHE J., Volume 51 (2005) no. 9, pp. 2428-2440

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multiphase flows in microfluidics

Charles N. Baroud; Hervé Willaime

C. R. Phys (2004)


A model for gas–liquid slug flow in downwardly inclined ducts

Arthur Dyment; Abdelaziz Boudlal

C. R. Méca (2004)


Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights

Paul Chorin; Antoine Boned; Julien Sebilleau; ...

C. R. Méca (2023)