Comptes Rendus
Laser-driven electron acceleration in plasmas with few-cycle pulses
[Accélération laser d'électrons dans les plasmas à l'aide d'impulsions formées de quelques cycles]
Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 140-147.

On présente l'accélération laser d'électrons à l'aide d'implusions laser de 8 fs, ce qui représente 3 cycles optiques, et de 40 mJ seulement. La théorie et les simulations numériques prédisent que ce domaine vierge expérimentalement est pertinent pour l'accélération laser par champ de sillage. Le spectre des électrons produit est monoénergétique avec un pic atteignant 50 MeV et exempt d'une composante thermique de basse énergie. Le faisceau d'électrons a typiquement une divergence de 5–10 mrad. L'accélération se fait à 10 Hz de façon routinière et apparaît donc comme une source prometteuse pour diverses applications.

We report on laser-driven electron acceleration with 8 fs, i.e. three optical cycles, pulse duration and 40 mJ energy. Theory and numerical simulations predict that this experimentally unexplored parameter range is relevant for laser wake-field acceleration. The electron spectra produced are monoenergetic with a peak up to 50 MeV and free of low-energy electrons with thermal spectrum. The electron beam has a typical divergence of 5–10 mrad. The accelerator is routinely operated at 10 Hz and correspondingly it is a promising source for several applications.

Publié le :
DOI : 10.1016/j.crhy.2009.03.014
Keywords: Laser-driven electron acceleration, Bubble regime, Monoenergetic, Ultrashort pulse
Mot clés : Accélération laser d'électrons, Régime de la bulle, Monoénergétique, Impulsion ultra-courte
Laszlo Veisz 1 ; Karl Schmid 1, 2 ; Franz Tavella 1 ; Sofia Benavides 1 ; Raphael Tautz 1 ; Daniel Herrmann 1 ; Alexander Buck 1 ; Bernhard Hidding 3 ; Andrius Marcinkevicius 1 ; Ulrich Schramm 4 ; Michael Geissler 5 ; Jürgen Meyer-ter-Vehn 1 ; Dietrich Habs 2 ; Ferenc Krausz 1, 2

1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
2 Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
3 Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
4 Forschungszentrum Dresden-Rossendorf e. V., Bautzner Landstrasse 128, 01328 Dresden, Germany
5 Queen's University Belfast, Belfast BT7 1NN, UK
@article{CRPHYS_2009__10_2-3_140_0,
     author = {Laszlo Veisz and Karl Schmid and Franz Tavella and Sofia Benavides and Raphael Tautz and Daniel Herrmann and Alexander Buck and Bernhard Hidding and Andrius Marcinkevicius and Ulrich Schramm and Michael Geissler and J\"urgen Meyer-ter-Vehn and Dietrich Habs and Ferenc Krausz},
     title = {Laser-driven electron acceleration in plasmas with few-cycle pulses},
     journal = {Comptes Rendus. Physique},
     pages = {140--147},
     publisher = {Elsevier},
     volume = {10},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crhy.2009.03.014},
     language = {en},
}
TY  - JOUR
AU  - Laszlo Veisz
AU  - Karl Schmid
AU  - Franz Tavella
AU  - Sofia Benavides
AU  - Raphael Tautz
AU  - Daniel Herrmann
AU  - Alexander Buck
AU  - Bernhard Hidding
AU  - Andrius Marcinkevicius
AU  - Ulrich Schramm
AU  - Michael Geissler
AU  - Jürgen Meyer-ter-Vehn
AU  - Dietrich Habs
AU  - Ferenc Krausz
TI  - Laser-driven electron acceleration in plasmas with few-cycle pulses
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 140
EP  - 147
VL  - 10
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.03.014
LA  - en
ID  - CRPHYS_2009__10_2-3_140_0
ER  - 
%0 Journal Article
%A Laszlo Veisz
%A Karl Schmid
%A Franz Tavella
%A Sofia Benavides
%A Raphael Tautz
%A Daniel Herrmann
%A Alexander Buck
%A Bernhard Hidding
%A Andrius Marcinkevicius
%A Ulrich Schramm
%A Michael Geissler
%A Jürgen Meyer-ter-Vehn
%A Dietrich Habs
%A Ferenc Krausz
%T Laser-driven electron acceleration in plasmas with few-cycle pulses
%J Comptes Rendus. Physique
%D 2009
%P 140-147
%V 10
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2009.03.014
%G en
%F CRPHYS_2009__10_2-3_140_0
Laszlo Veisz; Karl Schmid; Franz Tavella; Sofia Benavides; Raphael Tautz; Daniel Herrmann; Alexander Buck; Bernhard Hidding; Andrius Marcinkevicius; Ulrich Schramm; Michael Geissler; Jürgen Meyer-ter-Vehn; Dietrich Habs; Ferenc Krausz. Laser-driven electron acceleration in plasmas with few-cycle pulses. Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 140-147. doi : 10.1016/j.crhy.2009.03.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.014/

[1] T. Tajima; D. Dawson Laser electron accelerator, Phys. Rev. Lett., Volume 43 (1979), p. 267

[2] A. Pukhov et al. Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B, Volume 74 (2002), p. 355

[3] W. Lu et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime, Phys. Rev. Lett., Volume 96 (2006), p. 165002

[4] F.S. Tsung et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers, Phys. Plasmas, Volume 13 (2006), p. 056708

[5] S. Gordienko; A. Pukhov Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons, Phys. Plasmas, Volume 12 (2005), p. 043109

[6] A. Pukhov; S. Gordienko Bubble regime of wake field acceleration: similarity theory and optimal scalings, Philos. Trans. R. Soc. A, Volume 364 (2006), p. 623

[7] J. Faure et al. Observation of laser-pulse shortening in nonlinear plasma waves, Phys. Rev. Lett., Volume 95 (2005), p. 205003

[8] J. Faure et al. A laser–plasma accelerator producing monoenergetic electron beams, Nature, Volume 431 (2004), p. 541

[9] V. Malka et al. Monoenergetic electron beam optimization in the bubble regime, Phys. Plasmas, Volume 12 (2005), p. 056702

[10] C.G.R. Geddes et al. High quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, Volume 431 (2004), p. 538

[11] C.G.R. Geddes et al. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators, Phys. Plasmas, Volume 12 (2005), p. 056709

[12] S.P.D. Mangles et al. Monoenergetic beams of relativistic electrons from intense laser plasma interactions, Nature, Volume 431 (2004), p. 535

[13] S.P.D. Mangles et al. The generation of mono-energetic electron beams from ultrashort pulse laser–plasma interactions, Philos. Trans. R. Soc. A, Volume 364 (2006), p. 663

[14] T. Hosokai et al. Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity, Phys. Rev. E, Volume 73 (2006), p. 036407

[15] A. Maksimchuk et al. Studies of laser wakefield structures and electron acceleration in underdense plasmas, Phys. Plasmas, Volume 15 (2008), p. 056703

[16] B. Hidding et al. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses, Phys. Rev. Lett., Volume 96 (2006), p. 105004

[17] W.P. Leemans et al. GeV electron beams from a centimeter-scale accelerator, Nat. Phys., Volume 2 (2006), p. 696

[18] T.P. Rowlands-Rees et al. Laser-driven acceleration of electrons in a partially ionized plasma channel, Phys. Rev. Lett., Volume 100 (2008), p. 105005

[19] S. Karsch et al. GeV-scale electron acceleration in a gas-filled capillary discharge waveguide, New J. Phys., Volume 9 (2007), p. 415

[20] J. Faure et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, Volume 444 (2006), p. 737

[21] J. Osterhoff et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell, Phys. Rev. Lett., Volume 101 (2008), p. 085002

[22] M. Geissler et al. Bubble acceleration of electrons with few-cycle laser pulses, New J. Phys., Volume 8 (2006), p. 186

[23] K. Schmid et al. Few-cycle laser-driven electron acceleration, Phys. Rev. Lett., Volume 102 (2009), p. 124801

[24] Femtolasers GmbH, Femtopower Compact Pro

[25] F. Tavella et al. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier, Opt. Lett., Volume 32 (2007), p. 2227

[26] B. Hidding et al. Novel method for characterizing relativistic electron beams in a harsh laser–plasma environment, Rev. Sci. Instrum., Volume 78 (2007), p. 083301

[27] C. Gahn et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels, Phys. Rev. Lett., Volume 83 (1999), p. 4772

[28] A. Oguchi et al. Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field, Phys. Plasmas, Volume 15 (2008), p. 043102

[29] C.-T. Hsieh et al. Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator, Phys. Rev. Lett., Volume 96 (2006), p. 095001

[30] A. Yamazaki et al. Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas, Phys. Plasmas, Volume 12 (2005), p. 093101

[31] S. Masuda et al. Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator, Phys. Plasmas, Volume 14 (2007), p. 023103

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Physics of colliding laser pulses in underdense plasmas

Jérôme Faure; Clément Rechatin; Ahmed Ben-Ismail; ...

C. R. Phys (2009)


Laser electron acceleration with 10 PW lasers

Luis O. Silva; F. Fiúza; R.A. Fonseca; ...

C. R. Phys (2009)