Skip to main content
Log in

Homeostasis of peripheral immune effectors

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we use both mathematical modeling and simulation to explore homeostasis of peripheral immune system effector cells, particularly alveolar macrophages. Our interest is in the distributed control mechanisms that allow such a population to maintain itself. We introduce a multi-purpose simulator designed to study individual cell responses to local molecular signals and their effects on population dynamics. We use the simulator to develop a model of growth factor regulation of macrophage proliferation and survival. We examine the effects of this form of regulation in the context of two competing hypotheses regarding the source of new alveolar macrophages. In one model, local cells divide to replenish the population; in the other, only cells migrating from circulation divide. We find that either scenario is plausible, although the influx-driven system is inherently more stable. The proliferation-driven system requires lower cell death and efflux rates than the influx-driven system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akagawa, K. S., K. Kamoshita and T. Tokunaga (1988). Effects of granulocyte-macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J. Immunol. 141, 3383–3390.

    Google Scholar 

  • Becker, S., R. B. Devlin and J. S. Haskill (1989). Differential production of tumor necrosis factor, macrophage colony stimulating factor, and interleukin 1 by human alveolar macrophages. J. Leukoc. Biol. 45, 353–361.

    Google Scholar 

  • Blusse van Oud Alblas, A., H. Mattie and R. van Furth (1983). A quantitative evaluation of pulmonary macrophage kinetics. Cell Tissue Kinetics 16, 211–219.

    Google Scholar 

  • Blusse van Oud Alblas, A. and R. van Furth (1979). Origin, kinetics and characteristics of pulmonary macrophages in the normal steady state. J. Exp. Med. 149, 1504–1518.

    Article  Google Scholar 

  • Bowden, D. H. (1984). The alveolar macrophage. Environ. Health Perspect. 55, 327–341.

    Google Scholar 

  • Burke, M. A., B. F. Morel, T. B. Oriss, J. Bray, S. A. McCarthy and P. A. Morel (1997). Modeling the proliferative response of T cells to IL-2 and IL-4. Cell. Immunol. 178, 42–52.

    Article  Google Scholar 

  • Chen, B. D., C. K. 3rd and H. S. Lin (1984). Receptor-mediated binding and internalization of colony-stimulating factor (CSF-1) by mouse peritoneal exudate macrophages. J. Cell Sci. 70, 147–166.

    Google Scholar 

  • Chen, B. D., T. Chou and C. R. Clark (1987). Delineation of receptor-mediated colony-stimulating factor (CSF-1) utilization and cell production by precursors of mononuclear phagocytic series at various stages of differentiation. Br. J. Haematol. 67, 381–386.

    Google Scholar 

  • Chen, B. D., M. Mueller and T. H. Chou (1988). Role of granulocyte/macrophage colony-stimulating factor in the regulation of murine alveolar macrophage proliferation and differentiation. J. Immunol. 141, 139–144.

    Google Scholar 

  • Coggle, J. E. and J. D. Tarling (1984). The proliferation kinetics of pulmonary alveolar macrophages. J. Leukoc. Biol. 35, 317–327.

    Google Scholar 

  • Corry, D., P. Kulkarni and M. F. Lipscomb (1984). The migration of bronchoalveolar macrophages into hilar lymph nodes. Am. J. Pathol. 115, 321–328.

    Google Scholar 

  • Fisher, E. S., D. A. Lauffenburger and R. P. Daniele (1988). The effect of alveolar macrophage chemotaxis on bacterial clearance from the lung surface. Am. Rev. Respir. Dis. 137, 1129–1134.

    Google Scholar 

  • Fritsch, P. and R. Masse (1992). Overview of pulmonary alveolar macrophage renewal in normal rats and during different pathological processes. Environ. Health Perspect. 97, 59–67.

    Google Scholar 

  • Guilbert, L. J. and E. R. Stanley (1986). The interaction of 125I-colony-stimulating factor-1 with bone marrow-derived macrophages. J. Biol. Chem. 261, 4024–4032.

    Google Scholar 

  • Harmsen, A. G., B. A. Muggenburg, M. B. Snipes and D. E. Bice (1985). The role of macrophages in particle translocation from lungs to lymph nodes. Science 230, 1277–1280.

    Google Scholar 

  • Held, T. K., M. E. A. Mielke, M. Unger, M. Trautmann and A. S. Cross (1996). Kinetics and dose dependence of macrophage colony-stimulating factor-induced proliferation and activation of murine mononuclear phagocytes in situ: differences between lungs, liver and spleen. J. Interferon Cytokine Res. 16, 159–168.

    Article  Google Scholar 

  • Lanza, R. P., R. Langer and J. Vacanti (Eds) (2000). Principles of Tissue Engineering, Academic Press.

  • Laskin, D. L., B. Weinberger and J. D. Laskin (2001). Functional heterogeneity in liver and lung macrophages. J. Leukoc. Biol. 70, 163–170.

    Google Scholar 

  • Lauffenburger, D. A. and J. J. Linderman (1993). Receptors: Models for Binding, Trafficking, and Signaling, Oxford University Press.

  • Lin, H., B. L. Lokeshwar and S. Hsu (1989). Both granulocyte-macrophage CSF and macrophage CSF control the proliferation and survival of the same subset of alveolar macrophages. J. Immunol. 142, 515–519.

    Google Scholar 

  • Meier-Schellersheim, M. (2001). The immune system as a complex system: description and simulation of the interactions of its constituents, PhD thesis, University of Hamburg, Hamburg, Germany.

    Google Scholar 

  • Metcalf, D. (1991). Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 254, 529–533.

    Google Scholar 

  • Morel, B. F., M. A. Burke, J. Kalagnanam, S. A. McCarthy, D. J. Tweardy and P. A. Morel (1996). Making sense of the combined effect of interleukin-2 and interleukin-4 on lymphocytes using a mathematical model. Bull. Math. Biol. 58, 569–594.

    Article  MATH  Google Scholar 

  • Pardee, A. B. (1989). G1 events and regulation of cell proliferation. Science 246, 603–608.

    Google Scholar 

  • Perez-Arellano, J. L., M. C. Alcazar-Montero and A. Jimenez-Lopez (1990). Alveolar macrophage: origin, kinetics and relationship with cells of the alveolo-interstitial region. Allergologia et immunopathologia (International Journal for Clinical and Investigative Allergology and Clinical Immunology) 18, 175–183.

    Google Scholar 

  • Shellito, J., C. Esparza and C. Armstrong (1987). Maintenance of the normal rat alveolar macrophage cell population. Am. Rev. Respir. Dis. 135, 78–82.

    Google Scholar 

  • Smith, K. A. (1989). The interleukin 2 receptor. Ann. Rev. Cell Biol. 5, 397–425.

    Google Scholar 

  • Smith, J. A. and L. Martin (1973). Do cells cycle? Proc. Natl Acad. Sci. USA 70, 1263–1267.

    Article  Google Scholar 

  • Stanley, E. R. and D. Metcalf (1971). Enzyme treatment of colony stimulating factor: evidence for a peptide component. Aust. J. Exp. Biol. Med. Sci. 49, 281–290.

    Google Scholar 

  • Tushinski, R. J., I. T. Oliver, L. J. Guilbert, P. W. Tynan, J. R. Warner and E. R. Stanley (1982). Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71–81.

    Article  Google Scholar 

  • Tushinski, R. J. and E. R. Stanley (1985). The regulation of mononuclear phagocyte entry into S phase by the colony stimulating factor CSF-1. J. Cell. Physiol. 122, 221–228.

    Article  Google Scholar 

  • Tyrcha, J. (2001). Age-dependent cell cycle models. J. Theor. Biol. 213, 89–101.

    Article  MathSciNet  Google Scholar 

  • van Furth, R. (Eds) (1992). Production and migration of monocytes and kinetics of macrophages, in Mononuclear Phagocytes, Kluwer Academic Publishers, pp. 3–12.

  • Warrender, C., S. Forrest and L. Segel (2003). Modeling intercellular signalling in tuberculosis, in 4th International Conference on Systems Biology, St. Louis, Missouri, pp. 268–269.

  • Williams, G. T., C. A. Smith, E. Spooncer, T. M. Dexter and D. R. Taylor (1990). Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343, 76–79.

    Article  Google Scholar 

  • Zandstra, P. W., D. A. Lauffenburger and C. J. Eaves (2000). A ligand-receptor signaling thresholdmodel of stem cell differentiation control: a biologically conservedmechanism applicable to hematopoiesis. Blood 96, 1215–1222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Warrender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrender, C., Forrest, S. & Segel, L. Homeostasis of peripheral immune effectors. Bull. Math. Biol. 66, 1493–1514 (2004). https://doi.org/10.1016/j.bulm.2004.02.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.02.003

Keywords

Navigation