Skip to main content

Advertisement

Log in

Invasion of drug and pesticide resistance is determined by a trade-off between treatment efficacy and relative fitness

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Drug and pesticide resistance are among the most pressing problems facing public, animal and plant health today. In order to design effective resistance management strategies it is imperative to identify criteria for the invasion of resistant forms. Two key determinants of the ability of a resistant pest or pathogen to invade are any inherent fitness costs to the resistant subpopulation, and the effect of treatment on the sensitive and resistant subpopulations. For two generic classes of model which encompass many of the standard models in this field, we summarize relative fitness and treatment efficacy via two simple parameters, and demonstrate that invasion of resistance depends critically on a trade-off between them. Thresholds for invasion are derived when the effect of treatment is a constant reduction in the life-history parameters of the pathogen, and when treatment efficacy varies periodically with the repeated application and subsequent decay of the chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May (1991). Infectious Diseases of Humans: Dynamics and Control, Oxford: Oxford University Press.

    Google Scholar 

  • Austin, D. J. and R. M. Anderson (1999). Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos. Trans. R. Soc. Lond. B 354, 721–738.

    Article  Google Scholar 

  • Austin, D. J., M. Kakehashi and R. M. Anderson (1997). The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption. Proc. R. Soc. Lond. B 264, 1629–1638.

    Article  Google Scholar 

  • Blower, S. M. and J. L. Gerberding (1998). Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework. J. Mol. Med. 76, 624–636.

    Article  Google Scholar 

  • Blower, S. M., T. C. Porco and G. Darby (1998). Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nat. Med. 4, 673–678.

    Article  Google Scholar 

  • Blower, S. M., P. M. Small and P. C. Hopewell (1996). Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500.

    Google Scholar 

  • Bonhoeffer, S., A. D. Barbour and R. J. De Boer (2002). Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc. Lond. B 269, 1887–1893.

    Article  Google Scholar 

  • Bonhoeffer, S. and M. A. Nowak (1997). Pre-existence and emergence of drug resistance in HIV-1 infection. Proc. R. Soc. Lond. B 264, 631–637.

    Article  Google Scholar 

  • Brent, K. J. (2000). UK Fungicide Resistance Research: Risk of Resistance Development in Cereal Pathogens to Qo Inhibitor Fungicides, UK: Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • Chin, K. M. (1987). A simple model of selection for fungicide resistance in plant pathogen populations. Phytopathology 77, 666–669.

    Google Scholar 

  • Gubbins, S. and C. A. Gilligan (1999). Invasion thresholds for fungicide resistance: deterministic and stochastic analyses. Proc. R. Soc. Lond. B 266, 2539–2549.

    Article  Google Scholar 

  • Hamer, D. H., J. Gerald, D. R. Friedman and C. J. Gill (2002). From the farm to the kitchen table: the negative impact of antimicrobial use in animals on humans. Nutr. Rev. 60, 261–264.

    Article  Google Scholar 

  • Holland, J. J., J. C. de la Torre, D. K. Clarke and E. Duarte (1991). Quantification of relative fitness and great adaptability of clonal populations of RNA viruses. J. Virol. 65, 2960–2967.

    Google Scholar 

  • Kable, P. F. and H. Jeffery (1980). Selection for tolerance in organisms exposed to sprays of biocide mixtures: a theoretical model. Phytopathology 70, 8–12.

    Google Scholar 

  • Karaoglanidis, G. S., C. C. Thanassoulopoulos and P. M. Ioannidis (2001). Fitness of Cercospora beticola field isolates resistant and sensitive to demethylation inhibitor fungicides. Eur. J. Plant Pathol. 107, 337–347.

    Article  Google Scholar 

  • Levy, Y., R. Levi and Y. Cohen (1983). Buildup of a pathogen subpopulation resistant to a systemic fungicide under various control strategies: a flexible simulation model. Phytopathology 73, 1475–1480.

    Article  Google Scholar 

  • Lipsitch, M., C. T. Bergstrom and B. R. Levin (2000). The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl Acad. Sci. 97, 1938–1943.

    Article  Google Scholar 

  • Lipsitch, M. and B. R. Levin (1997). The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41, 363–373.

    Google Scholar 

  • Little, S. J., A. R. McLean, C. A. Spina, D. D. Richman and D. V. Havlir (1999). Viral dynamics of acute HIV-1 infection. J. Exp. Med. 190, 841–850.

    Article  Google Scholar 

  • Little, S. J. et al. (2002). Antiretroviral drug resistance among patients recently infected with HIV. New Engl. J. Med. 347, 385–394.

    Article  Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and S. A. H. Geritz (1992). How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202.

    Article  Google Scholar 

  • Milgroom, M. G. (1990). A stochastic model for the initial occurrence and development of fungicide resistance in plant pathogen populations. Phytopathology 80, 410–416.

    Google Scholar 

  • Milgroom, M. G., S. A. Levin and W. E. Fry (1989). Population genetics theory and fungicide resistance, in Plant Disease Epidemiology 2: Genetics, Resistance and Management, K. J. Leonard and W. E. Fry (Eds), New York: McGraw-Hill, pp. 340–367.

    Google Scholar 

  • Nowak, M. A. and R. M. May (2000). Virus Dynamics, Oxford: Oxford University Press.

    MATH  Google Scholar 

  • O’Hara, R. B., B. J. Nielsen and H. Østergård (2000). The effect of fungicide dose on the composition of laboratory populations of barley powdery mildew. Plant Pathol. 49, 558–566.

    Article  Google Scholar 

  • Park, A. W., S. Gubbins and C. A. Gilligan (2001). Invasion and persistence of plant parasites in a spatially structured host population. Oikos 94, 162–174.

    Article  Google Scholar 

  • Pearson, H. (2002). ’superbug’ hurdles key drug barrier. Nature 418, 469.

    Article  Google Scholar 

  • Peck, S. L. (2001). Antibiotic and insecticide resistance—is it time to start talking? Trends Microbiol. 9, 286–292.

    Article  Google Scholar 

  • Peck, S. L. and S. P. Ellner (1997). The effect of economic thresholds and life-history parameters on the evolution of pesticide resistance in a regional setting. Am. Nat. 149, 43–63.

    Article  Google Scholar 

  • Raposo, R., V. Gomez, T. Urrutia and P. Melgarejo (2000). Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90, 1246–1249.

    Google Scholar 

  • Shaw, M. W. (1989). A model for the evolution of polygenically controlled fungicide resistance. Plant Pathol. 38, 44–55.

    Google Scholar 

  • Skylakakis, G. (1982). Epidemiological factors affecting the rate of selection of biocide-resistant genotypes of plant pathogenic fungi. Phytopathology 73, 271–273.

    Google Scholar 

  • Skylakakis, G. (1983). Theory and strategy of chemical control. Ann. Rev. Phytopathol. 21, 117–135.

    Article  Google Scholar 

  • Stafford, M. A., L. Corey, Y. Z. Cao, E. S. Dar, D. D. Ho and A. S. Perelson (2000). Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301.

    Article  Google Scholar 

  • Swinton, J. (1998). Extinction times and phase transitions for spatially structured closed epidemics. Bull. Math. Biol. 60, 215–230.

    Article  MATH  Google Scholar 

  • Vendite, L. L. and R. Ghini (1999). A mathematical model for fungal population growth and the fungicide resistance problem. J. Biol. Syst. 7, 239–249.

    Article  Google Scholar 

  • Wallace, B. (1981). Basic Population Genetics, Cambridge: Cambridge University Press.

    Google Scholar 

  • Wilson, E. O. and W. H. Bossert (1971). Primer of Basic Population Biology, Stamford: Sinauer Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R.J., Gubbins, S. & Gilligan, C.A. Invasion of drug and pesticide resistance is determined by a trade-off between treatment efficacy and relative fitness. Bull. Math. Biol. 66, 825–840 (2004). https://doi.org/10.1016/j.bulm.2003.11.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.11.006

Keywords

Navigation