Arabian Journal of Chemistry

Arabian Journal of Chemistry

Volume 13, Issue 1, January 2020, Pages 3210-3217
Arabian Journal of Chemistry

Original article
Mechanical properties of carbon black/poly (ε-caprolactone)-based tissue scaffolds

https://doi.org/10.1016/j.arabjc.2018.10.005Get rights and content
Under a Creative Commons license
open access

Abstract

Carbon black (CB) spherical particles were added to poly(ε-caprolactone) (PCL) polymer to produce strong synthetic tissue scaffolds for biomedical applications. The objective of this paper is to study the mechanical behavior of CB/PCL-based nanocomposites using experimental tests, multi-scale numerical approaches, and analytical models. The mechanical properties of CB/PCL scaffolds were characterized using thermal mechanical analysis and results show a significant increase of the elastic modulus with increasing nanofiller concentration up to 7 wt%. Conversely, finite element computations were performed using a simulated microstructure, and a numerical model based on the representative volume element (RVE) was generated. Thereafter, Young's moduli were computed using a 3D numerical homogenization technique. The approach takes into consideration CB particles’ diameters, as well as their random distribution and agglomerations into PCL. Experimental results were compared with data obtained using numerical approaches and analytical models. Consistency in the results was observed, especially in the case of lower CB fractions.

Keywords

Carbon black/poly(ε-caprolactone) nanocomposites
Tissue scaffolds
Computational homogenization
Numerical approaches
Microstructure

Cited by (0)

Peer review under responsibility of King Saud University.