Elsevier

Diabetes & Metabolism

Volume 31, Issue 5, November 2005, Pages 429-439
Diabetes & Metabolism

Review
New insight into the pathophysiology of lipid abnormalities in type 2 diabetes

https://doi.org/10.1016/S1262-3636(07)70213-6Get rights and content

Summary

Lipid abnormalities in patients with type 2 diabetes are likely to play an important role in the development of atherogenesis. These lipid disorders include not only quantitative but also qualitative abnormalities of lipoproteins which are potentially atherogenic. The main quantitative abnormalities are increased triglyceride levels, related to an augmented hepatic production of VLDL and a reduction of both VLDL and IDL catabolism, and decreased HDL-Cholesterol levels due to an accelerated HDL catabolism. The main qualitative abnormalities include large VLDL particles (VLDL1), relatively rich in triglycerides, small dense LDL particles, increase in triglyceride content of LDL and HDL, glycation of apolipoproteins and increased susceptibility of LDL to oxidation. Moreover, although plasma LDL-cholesterol level is usually normal in type 2 diabetic patients, LDL particles show significant kinetic abnormalities, such as reduced turn-over, which is potentially harmful. The pathophysiology of lipid abnormalities in type 2 diabetes is not yet totally explained. However, insulin resistance and the “relative” insulin deficiency, observed in patients with type 2 diabetes, are likely to play a crucial role since insulin has an important function in the regulation of lipid metabolism. In addition, it is not excluded that adipocytokines, such as adiponectin, could play a role in the pathophysiology of lipid abnormalities in type 2 diabetes.

Résumé

Physiopathologie des anomalies lipidiques observées dans le diabète de type 2: données nouvelles

Les anomalies lipidiques observées chez les patients diabétiques de type 2 ont une responsabilité importante dans la plus grande fréquence et gravité des accidents cardio-vasculaires propres au diabète de type 2. La dyslipidémie du diabète de type 2 est caractérisée par la présence d'anomalies quantitative et qualitatives des lipoprotéines, toutes potentiellement athérogènes. Les principales anomalies quantitatives sont représentées par l'hypertriglycéridémie, secondaire à une augmentation de la production hépatique des VLDL et à un ralentissement du catabolisme des VLDL et IDL, et par la diminution des concentrations plasmatiques de HDL-cholestérol, liée à l'augmentation du catabolisme des HDL. Les principales anomalies qualitatives comprennent la présence de VLDL de grande taille (VLDL1), relativement riches en triglycérides, de LDL petites et denses, un enrichissement en triglycérides des LDL et HDL, une glycation des apolipoprotéines et une augmentation de l'oxydation des LDL. En outre, bien que le niveau de LDL-cholestérol plasmatique soit en règle normal, chez les patients diabétiques de type 2, il est observé des modifications significatives de la cinétique des LDL, en particulier un ralentissement de leur turn-over, potentiellement délétère. La physiopathologie précise de la dyslipidémie du diabète de type 2 n'est pas encore parfaitement connue. Cependant, l'insulinorésistance et la carence “relative” en insuline, observées dans le diabète de type 2, apparaissent jouer un rôle important puisque l'insuline exerce des fonctions essentielles dans le contrôle du métabolisme lipidique. En outre, il n'est pas exclu que les adipocytokines, en particulier l'adiponectine, puissent être impliquées dans la physiopathologie des anomalies lipidiques du diabète de type 2.

References (112)

  • MC Lin et al.

    Microsomal triglyceride transfer protein (MTP) regulation in HEPG2 cells: insulin negatively regulates MTP gene expression

    J Lipid Res

    (1995)
  • C Taghibiglou et al.

    Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model

    J Biol Chem

    (2000)
  • BV Howard et al.

    Integrated study of low density lipoprotein metabolism and very low density lipoprotein metabolism in non insulin dependent diabetes

    Metabolism

    (1987)
  • M Syvanne et al.

    Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease

    J Lipid Res

    (1994)
  • S Saheki et al.

    In vitro degradation of very low density lipoprotein from diabetic patients by lipoprotein lipase

    Clin Chim Acta

    (1993)
  • V Anber et al.

    Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans

    Atherosclerosis

    (1996)
  • DL Tribble et al.

    Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size

    Atherosclerosis

    (1992)
  • HJ Kim et al.

    Non enzymatic glycosylation of human plusma low density lipoprotein. Evidence for in vitro and in vivo glucosylation

    Metabolism

    (1982)
  • A Bowie et al.

    Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?

    Atherosclerosis

    (1993)
  • L Duvillard et al.

    Inefficiency of insulin therapy to correct apolipoprotein A-I metabolic abnormalities in non insulin-dependent diabetes mellitus

    Atherosclerosis

    (2000)
  • C Calvo et al.

    Non enzymatic glycation of apolipoprotein A1. Effects on its self-association and lipid binding properties

    Biochem Biophys Res Com

    (1988)
  • M Syvanne et al.

    Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I: A-II particles and phospholipid transfer protein

    Atherosclerosis

    (1996)
  • JD Bagdade et al.

    Accelerated cholesteryl ester transfer in non insulin-dependent diabetes mellitus

    Atherosclerosis

    (1993)
  • S Riemens et al.

    Elevated plasma cholesteryl ester transfer in NIDDM relationships with apo B-containing lipoproteins and phospholipid transfer protein

    Atherosclerosis

    (1998)
  • K Motojima et al.

    Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner

    J Biol Chem

    (1998)
  • SM Haffner et al.

    Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction

    N Engl J Med

    (1998)
  • K Pyörälä et al.

    Diabetes and atherosclerosis: an epidemiologic view

    Diabetes Metab Rev

    (1987)
  • F de Vegt et al.

    Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study

    Diabetologia

    (1999)
  • WB Kannel et al.

    Diabetes and cardiovascular risk factors: the Framingham study

    Circulation

    (1979)
  • RC Turner et al.

    Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23)

    BMJ

    (1998)
  • GF Lewis et al.

    Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apo B production in normal weight and obese individuals

    Diabetes

    (1993)
  • R Malmström et al.

    Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects

    Diabetes

    (1998)
  • JD Brunzell et al.

    Insulin and adipose tissue lipoprotein lipase activity in humans

    Int J Obes

    (1981)
  • SK Fried et al.

    Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men

    J Clin Invest

    (1993)
  • A Chait et al.

    Low-density lipoprotein receptor activity in cultured human skin fibroblasts. Mechanism of insulin-induced stimulation

    J Clin Invest

    (1979)
  • T Mazzone et al.

    In vivo stimulation of low-density lipoprotein degradation by insulin

    Diabetes

    (1984)
  • G Ruotolo et al.

    Normalization of lipoprotein composition by intraperitoneal insulin in IDDM. Role of increased hepatic lipase activity

    Diabetes Care

    (1994)
  • SC Riemens et al.

    Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration: blunted response to insulin in type 2 diabetic patients

    Diabetes

    (1999)
  • MI Harris

    Hypercholesterolemia in diabetes and glucose intolerance in the U.S. population

    Diabetes Care

    (1991)
  • M Laakso

    Lipids and lipoproteins as risk factors for coronary heart disease in non-insulin-dependent diabetes mellitus

    Ann Med

    (1996)
  • UK Prospective Diabetes Study (UKPDS) XI

    Biochemical risk factors in type 2 diabetic patients at diagnosis compared with age-matched normal subjects

    Diabet Med

    (1994)
  • MR Taskinen

    Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus

    Diabetes

    (1992)
  • BV Howard et al.

    Dyslipidemia in non insulin-dependent diabetes mellitus

    Endocrine Rev

    (1994)
  • GH Tomkin et al.

    Insulin and lipoprotein metabolism with special reference to the diabetic state

    Diabetes Metab Rev

    (1994)
  • BV Howard

    Pathogenesis of diabetic dyslipidemia

    Diabetes Rev

    (1995)
  • MF Lopes-Virella et al.

    Modification of lipoproteins in diabetes

    Diabetes Metab Rev

    (1996)
  • B Vergès

    Dyslipidemia in diabetes mellitus. Review of the main lipoprotein abnormalities and their consequences on the development of atherogenesis

    Diabetes Metab

    (1999)
  • G Steiner

    The dyslipoproteinemias of diabetes

    Atherosclerosis

    (1994)
  • AH Kissebah et al.

    Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein B kinetics in non insulin dependent diabetes mellitus

    Diabetes

    (1982)
  • GM Reaven et al.

    Diabetic hypertriglyceridemia. Evidence for three clinical syndromes

    Diabetes

    (1981)
  • Cited by (99)

    • Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats

      2017, Archives of Biochemistry and Biophysics
      Citation Excerpt :

      The analysis of serum electropherogram from rats administered with Cd shown zones indicating the presence of small LDL particles. The mechanism that leads to the formation of small LDL require of cholesterol ester transfer protein (CETP) and hepatic lipase to the formation of small LDL [50,52]. Therefore, it seems that the presence of large triglyceride-rich VLDL1 particles is a prerequisite for the formation of small LDL [45,53,54].

    View all citing articles on Scopus
    View full text