Skip to main content
Log in

Thermogravimetric Analysis of Coal Char Combustion Kinetics

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e., non-isothermal single heating rate (A), non-isothermal multiple heating rate (B), and isothermal test (C), were conducted to calculate the kinetic parameters of combustion of coal char. The results show that the combustion characteristics of bituminous coal char is better than that of anthracite char, and both increase of heating rate and increase of combustion temperature can obviously improve combustion characteristics of coal char. Activation energies of coal char combustion calculated by different methods are different, with activation energies calculated by methods A, B and C in the range of 103. 12–153. 77, 93. 87–119. 26, and 46. 48–76. 68 kJ/mol, respectively. By using different methods, activation energy of anthracite char is always higher than that of bituminous coal char. In non-isothermal tests, with increase of combustion temperature, the combustion process changed from kinetic control to diffusion control. For isothermal combustion, the combustion process was kinetically controlled at temperature lower than 580 °C for bituminous coal char and at temperature lower than 630 °C for anthracite char.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Zhang, L. Z. Jin, L. Y. Wang, Y. H. Jin, Coal Sci. Technol. 34 (2006) No. 10, 62–65.

    Google Scholar 

  2. C. L. Qi, J. L. Zhang, X. H. Lin, Q. Y. Liu, X. L. Wang, J. Iron Steel Res. Int. 18 (2011) No. 8, 1–8.

    Article  Google Scholar 

  3. J. L. Zhang, G. W. Wang, X. D. Xing, Q. H. Pang, J. G. Shao, S. Ren, J. Iron Steel Res. 25 (2013) No. 4, 9–14.

    Google Scholar 

  4. N. M. Laurendeau, Prog. Energy Combust. Sci. 4 (1978) 221–270.

    Article  Google Scholar 

  5. H. Liu, Energ. Fuel 23 (2009) 4278–4285.

    Article  Google Scholar 

  6. G.G. Fouga, G. D. Micco, A. E. Bohe, Fuel 90 (2011) 674–680.

    Article  Google Scholar 

  7. B. Jankovic, Chem. Eng. J. 162 (2010) 331–340.

    Article  Google Scholar 

  8. F. Hua, Z. C. Liu, Shandong Electric Power 24 (1988) No. 6, 6–10.

    Google Scholar 

  9. S. X. Xiao, Q. Y. Fang, P. F. Fu, H. C. Zhou, J. Eng. Thermophys. 25 (2004) 891–893.

    Google Scholar 

  10. A. W. Cpats, J. P. Redfern, Nature 201 (1965) 68–69.

    Google Scholar 

  11. C. Li, Y. Yamamoto, M. Suzuki, D. Hirabayashi, K. Suzuki, J. Therm. Anal. Cal. 95 (2009) 991–997.

    Article  Google Scholar 

  12. M. X. Fang, D. K. Shen, Y. X. Li, C. J. Yu, Z. Y. Luo, K. F. Cen, J. Anal. Appl. Pyrol. 77 (2006) 22–27.

    Article  Google Scholar 

  13. A. G. Dumanli, S. Tas, Y. Yurum, J. Therm. Anal. Cal. 103 (2011) 925–933.

    Article  Google Scholar 

  14. S. P. Zou, Y. L. Wu, M. D. Yang, C. Li, J. M. Tong, Biore-sour. Technol. 101 (2010) 359–365.

    Article  Google Scholar 

  15. C. D. Doyle, J. Appl. Polym. Sci. 6 (1962) 639–642.

    Article  Google Scholar 

  16. N. Zouaoui, J. F. Brilhac, F. Mechati, M. Jeguirim, B. Djel-louli, P. Gilot, J. Therm. Anal. Cal. 102 (2010) 837–849.

    Article  Google Scholar 

  17. M. Kalogirou, P. Pistikopoulos, L. Ntziachristos, Z. Samaras, J. Therm. Anal. Cal. 95 (2009) 141–147.

    Article  Google Scholar 

  18. Y. Q. Hu, H. Nikzat, M. Nawata, N. Kobayashi, M. Hasa-tani, Fuel 80 (2001) 2111–2116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-liang Zhang.

Additional information

Foundation Item: Item Sponsored by National Natuml Science Foundation of China and Baosteel (51134008); National Key Technology Research and Development Program in the 12th Five-year Plan of China (2011BAC01B02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gw., Zhang, Jl., Shao, Jg. et al. Thermogravimetric Analysis of Coal Char Combustion Kinetics. J. Iron Steel Res. Int. 21, 897–904 (2014). https://doi.org/10.1016/S1006-706X(14)60159-X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60159-X

Key words

Navigation