Structure
Volume 6, Issue 8, 15 August 1998, Pages 957-970
Journal home page for Structure

Research Article
The crystal structure of dienoyl-CoA isomerase at 1.5 å resolution reveals the importance of aspartate and glutamate sidechains for catalysis

https://doi.org/10.1016/S0969-2126(98)00098-7Get rights and content
Under an Elsevier user license
open archive

Abstract

Background: The degradation of unsaturated fatty acids is vital to all living organisms. Certain unsaturated fatty acids must be catabolized via a pathway auxiliary to the main β-oxidation pathway. Dienoyl-coenzyme A (dienoyl-CoA) isomerase catalyzes one step of this auxiliary pathway, the isomerization of 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, and is imported into both mitochondria and peroxisomes. Dienoyl-CoA isomerase belongs to a family of CoA-binding proteins that share the enoyl-CoA hydratase/isomerase sequence motif.

Results: The crystal structure of rat dienoyl-CoA isomerase has been determined at 1.5 å resolution. The fold closely resembles that of enoyl-CoA hydratase and 4-chlorobenzoyl-CoA dehalogenase. Dienoyl-CoA isomerase forms hexamers made up of two trimers. The structure contains a well ordered peroxisomal targeting signal type-1 which is mostly buried in the inter-trimer space. The active-site pocket is deeply buried and entirely hydrophobic, with the exception of the acidic residues Asp176, Glu196 and Asp204. Site-directed mutagenesis of Asp204 revealed that this residue is essential for catalysis. In a molecular modeling simulation, a molecule of 3-trans,5-cis-octadienoyl-CoA was docked into the active site.

Conclusions: The structural data, supported by the mutagenesis data, suggest a reaction mechanism where Glu196 acts as a proton acceptor and Asp204 acts as a proton donor. Asp176 is paired with Glu196 and is important for optimizing the catalytic proton transfer properties of Glu196. In the predicted mode of substrate binding, an oxyanion hole stabilizes the transition state by binding the thioester oxygen. The presence of a buried peroxisomal targeting signal suggests that dienoyl-CoA isomerase is prevented from reaching its hexameric structure in the cytosol.

Keywords

β-oxidation
import
isomerase
mitochondria
peroxisome

Cited by (0)

Y Modis, B Norledge and RK Wierenga, European Molecular Biology Laboratory, Postfach 10.2209, D-69012 Heidelberg, Germany.

SA Filppula, DK Novikov and JK Hiltunen, Biocenter Oulu, Department of Biochemistry and Laboratory of Structural Biological Chemistry, University of Oulu, Oulu, FIN-90570, Finland.

Present address for RK Wierenga (corresponding author): Department of Biochemistry, University of Oulu, Oulu, FIN-90570, Finland. e-mail: [email protected].