Solitons in Josephson junctions

This paper is dedicated to the memory of Bob Parmentier
https://doi.org/10.1016/S0167-2789(98)00131-6Get rights and content

Abstract

Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.

References (112)

  • R.D. Parmentier
  • N.F. Pedersen
  • T.A. Fulton et al.

    Sol. St. Commun.

    (1973)
  • N. Grønbech-Jensen et al.

    Phys. Lett. A

    (1991)
  • A.V. Ustinov et al.

    Phys. Lett. A

    (1997)
  • J.J. Chang et al.

    Phys. Rev. B

    (1985)
  • P.R. Auvil et al.

    J. Appl. Phys.

    (1987)
  • S. Sakai et al.

    Phys. Rev. B.

    (1998)
  • D.W. McLaughlin et al.

    Phys. Rev. A

    (1978)
  • R.D. Parmentier
  • N.F. Pedersen et al.

    Supercond. Sci. Technol.

    (1995)
  • A.V. Ustinov et al.
  • R. Kleiner et al.

    Phys. Rev. Lett.

    (1992)
  • R. Kleiner et al.

    Phys. Rev. B

    (1994)
  • G.S. Lee

    IEEE Trans. Appl. Supercond.

    (1991)
  • J.G. Caputo et al.

    Phys. Rev. B

    (1994)
  • R. Monaco et al.

    J. Appl. Phys.

    (1995)
  • N. Thyssen et al.

    IEEE Trans. Appl. Supercond.

    (1995)
  • A. Davidson et al.

    Phys. Rev. Lett.

    (1985)
  • A.V. Ustinov et al.

    Phys. Rev. Lett.

    (1992)
  • I.V. Vernik et al.

    J. Appl. Phys.

    (1996)
  • N. Martucciello et al.

    Phys. Rev. B

    (1996)
  • N. Grønbech-Jensen et al.

    Phys. Rev. B

    (1991)
  • I.V. Vernik et al.

    J. Appl. Physics

    (1997)
  • A.V. Ustinov

    Pis'ma Zh. Eksp. Teor. Fiz.

    (1996)
    A.V. Ustinov

    Sov. Phys. JETP Lett.

    (1996)
  • W.J. Johnson
  • A. Davidson et al.

    Appl. Phys. Lett.

    (1986)
  • B. Dueholm et al.

    Phys. Rev. Lett.

    (1981)
  • B.A. Malomed

    Phys. Rev. B

    (1993)
  • M.R. Scheuermann et al.

    Physica B

    (1981)
  • R. Monaco et al.

    Phys. Rev. B

    (1993)
  • A.V. Ustinov
  • P. Barbara et al.

    J. Appl. Phys.

    (1996)
  • S.N. Erne et al.

    Phys. Rev. B

    (1983)
  • I.O. Kulik

    Sov. Phys. JETP

    (1967)
  • N. Grønbech-Jensen et al.

    Phys. Rev. B

    (1995)
  • S. Pace et al.

    J. Low Temp. Phys.

    (1986)
    M. Cirillo et al.

    Phys. Scripta

    (1988)
  • A.V. Ustinov et al.

    Phys. Rev. Lett.

    (1996)
  • T. Nagatsuma et al.

    J. Appl. Phys.

    (1983)
    T. Nagatsuma et al.

    J. Appl. Phys.

    (1984)
    T. Nagatsuma et al.

    J. Appl. Phys.

    (1985)
    T. Nagatsuma et al.

    J. Appl. Phys.

    (1988)
  • V.P. Koshelets et al.

    IEEE Trans. Appl. Supercond.

    (1993)
  • Y.M. Zhang et al.

    Appl. Phys. Lett.

    (1993)
  • A.A. Golubov et al.

    Phys. Rev. B

    (1996)
  • V.P. Koshelets et al.

    Phys. Rev. B

    (1997)
  • A.V. Ustinov et al.

    Phys. Rev. Lett.

    (1992)
  • B. Mayer et al.

    Phys. Rev. B

    (1991)
  • S.G. Lachenmann et al.

    Phys. Rev. B

    (1993)
  • A. Laub et al.

    Phys. Rev. Lett.

    (1995)
  • S.G. Lachenmann et al.

    J. Appl. Phys.

    (1995)
  • D. Quenter et al.

    Phys. Rev. B

    (1995)
  • S. Keil et al.

    Phys. Rev. B

    (1996)
  • Cited by (263)

    • Discreteness effects on the fluxon interaction with the dipole impurity in the Josephson transmission line

      2024, Physics Letters, Section A: General, Atomic and Solid State Physics
    • Noise-induced, ac-stabilized sine-Gordon breathers: Emergence and statistics

      2024, Communications in Nonlinear Science and Numerical Simulation
    • Mode conversions and molecular forms of breathers under parameter control

      2023, Physics Letters, Section A: General, Atomic and Solid State Physics
    • Supratransmission-induced traveling breathers in long Josephson junctions

      2022, Communications in Nonlinear Science and Numerical Simulation
      Citation Excerpt :

      This nonlinear hyperbolic partial differential equation appears in a wide range of research fields [2–6], and it is typically regarded as one of the three fundamental soliton equations, the others being the Korteweg–de Vries equation and the nonlinear Schrödinger equation [7,8]. As a result, the LJJ has become a prototypal solid-state device for the exploration of soliton dynamics [9,10]. More precisely, perturbative correction terms to the pure SG equation arise when the effects of dissipation, an external current source, and thermal fluctuations are included to properly model the response of a realistic junction.

    View all citing articles on Scopus
    View full text