Thermostability and thermoactivity of enzymes from hyperthermophilic archaea

https://doi.org/10.1016/0968-0896(94)85015-1Get rights and content

Abstract

Enzymes from hyperthermophilic microorganisms are characteristically thermostable and thermoactive at extremely high temperatures. Information about the basis for the structure and function of these novel proteins is beginning to emerge. However, there are very few generalizations that can be drawn at this point that can be derived from the limited number of studies that have focused on biocatalysis and thermostability at extremely high tempratures.

Enzymes from hyperthennophilic microorganisms are characteristically thermostable and thermoactive at extremely high temperatures. Information about the basis for the structure and function of these novel proteins is beginning to emerge. However, there are very few generalizations that can be drawn at this point that can be derived from the limited number of studies that have focused on biocatalysis and thermostability at extremely high temperatures.

References (85)

  • R.M. Kelly et al.

    Curr. Opin. Biotechnol.

    (1993)
  • R. Huber et al.

    Syst. Appl. Microbiol.

    (1992)
  • G.J. Olson et al.

    J. Bacteriol.

    (1994)
  • A. Grziwa et al.

    FEBS Lett.

    (1991)
  • P. Zwickl et al.

    FEBS Lett.

    (1992)
  • T. Wenzel et al.

    FEBS Lett.

    (1993)
  • P.H. Janssen et al.

    FEMS Microbiol. Lett.

    (1992)
  • F.O. Bryant et al.

    J. Biol. Chem.

    (1989)
  • Y. Suzuki et al.

    Biochim. Biophys. Acta

    (1976)
  • C. Lee et al.

    J. Biol. Chem.

    (1990)
  • F.T. Robb et al.

    Biochim. Biophys. Acta

    (1992)
  • J. DiRuggiero et al.

    J. Biol. Chem.

    (1993)
  • X. Mai et al.

    J. Biol. Chem.

    (1994)
  • M.J. Danson

    Adv. Microbial Phys.

    (1988)
  • S. Scholz et al.

    FEBS Lett.

    (1992)
  • K.S. Lundberg et al.

    Gene

    (1991)
  • K.A. Laderman et al.

    J. Biol. Chem.

    (1993)
  • R.I.L. Eggen et al.

    Gene

    (1993)
  • H. Klump et al.

    J. Biol. Chem.

    (1992)
  • K.A. Laderman et al.

    J. Biol. Chem.

    (1993)
  • S. Mukund et al.

    J. Biol. Chem.

    (1993)
  • H.R. Badr et al.

    Syst. Appl. Microbiol.

    (1994)
  • R.M. Kelly et al.
  • M.W.W. Adams

    FEMS Microbiol. Rev.

    (1994)
  • Baross, J. A.; Deming, J. W. The Microbiology of Deep Sea Hydrothermal Vent Environments, Volume 1, Karl, D. M. Ed.;...
  • J.F. Miller et al.

    Appl Environ. Microbiol.

    (1988)
  • J.F. Holden et al.

    J. Bacteriol.

    (1993)
  • W.J. Jones et al.

    Arch. Microbiol.

    (1983)
  • L. Achenbach-Richter et al.

    Nature

    (1987)
  • C.R. Woese et al.

    Proc. Natl Acad. Sci. U.S.A.

    (1990)
  • R. Huber et al.

    Arch. Microbiol.

    (1986)
  • S.H. Brown
    (1992)
  • S.H. Brown et al.

    Biotechnot. Bioeng.

    (1993)
  • H.D. Simpson et al.

    Biochem. J.

    (1991)
  • S. Mukund et al.

    J. Biol. Chem.

    (1990)
  • T. Schäfer et al.

    Arch. Microbiol.

    (1992)
  • B. Dahlman et al.

    FEBS Lett.

    (1989)
  • P. Zwickl et al.

    Biochemistry

    (1992)
  • I.I. Blumentals et al.

    Appl. Environ. Microbiol.

    (1990)
  • T.D. Pihl et al.

    Proc. Natl Acad. Sci. U.S.A.

    (1989)
  • T.D. Pihl et al.

    J. Bacteriol.

    (1992)
  • R.N. Schicho et al.

    J. Bacteriol.

    (1993)
  • Cited by (23)

    • Structures of catalytic cycle intermediates of the Pyrococcus furiosus methionine adenosyltransferase demonstrate negative cooperativity in the archaeal orthologues

      2020, Journal of Structural Biology
      Citation Excerpt :

      The enzyme activity has been well described in terms of kinetics parameters, substrate specificity and folding in the hyperthermophilic Archaea Sulfolobus solfataricus (Porcelli et al., 1988; Wang et al., 2014), Methanococcus jannaschii (Garrido et al., 2009; Lu and Markham, 2002) and Thermococcus kodakarensis (Schlesier et al., 2013). Hyperthermophilic Archaea are worthy of attention and have been the subject of intense research over the years not only for their exceptional stability but also for their peculiar physicochemical characteristics that have led to many biotechnological applications (Adams and Kelly, 1994; Niehaus et al., 1999; Vieille and Zeikus, 2001). These enzymes, indeed, provide unique models for the study of the evolution of enzymes in terms of structure, stability, substrate specificity, catalytic properties and mechanism of action.

    • Bioactive glasses in gene regulation and proliferation

      2018, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses
    • α-glucosidase from pyrococcus furiosus

      2001, Methods in Enzymology
    View all citing articles on Scopus
    View full text