Elsevier

Nuclear Physics B

Volume 348, Issue 2, 14 January 1991, Pages 345-372
Nuclear Physics B

Strangeness, glue and quark matter content of neutrons stars

https://doi.org/10.1016/0550-3213(91)90523-ZGet rights and content

Abstract

We show that uncertainties in the strength of interactions of hyperons among themselves and with nucleons lead to a large uncertainty in the maximum allowed neutron star mass, even if the properties of nuclear and neutron matter are known with infinite precision around normal nuclear matter density and below. The presence of hyperons in the neutron star will generate a φ-meson condensate, however, and this reduces the sensitivity to the strengths of the couplings. The possibility that nucleons have a high strangeness content is explored, but it turns out to have negligible influence on neutron star structure. We consider a novel mechanism for nuclear attraction, a density-dependent glueball condensate. Finally, we determine which of these nuclear equations of state lead to a stable quark matter core in the star, via a first- or second-order phase transition.

References (45)

  • J. Hüfner

    Phys. Rep.

    (1985)
    L.P. Csernai et al.

    Phys. Rep.

    (1986)
    R. Stock

    Phys. Rep.

    (1986)
    H. Stöcker et al.

    Phys. Rep.

    (1986)
    R.B. Clare et al.

    Phys. Rep.

    (1986)
  • N.K. Glendenning

    Phys. Rev. Lett.

    (1986)
  • M. Prakash et al.

    Phys. Rev. Lett.

    (1988)
  • V.A. Ambartsumyan et al.

    Sov. Astron. AJ

    (1960)
    V.R. Pandharipande

    Nucl. Phys.

    (1971)
    H.A. Bethe et al.

    Nucl. Phys.

    (1974)
    R.L. Bowers et al.

    Phys. Rev.

    (1975)
  • N.K. Glendenning

    Phys. Lett.

    (1988)
    N.K. Glendenning

    Astrophys. J.

    (1985)
    N.K. Glendenning

    Z. Phys.

    (1987)
    N.K. Glendenning

    Z. Phys.

    (1987)
    N.K. Glendenning

    Nucl. Phys.

    (1988)
    N.K. Glendenning

    Nucl. Phys.

    (1989)
  • J.I. Kapusta

    Finite temperature field theory

    (1989)
  • P. Möller et al.

    At. Data Nucl. Data Tables

    (1988)
  • J. Boguta et al.

    Phys. Lett.

    (1981)
  • M. Rufa et al.

    J. Phys.

    (1987)
  • B. Freedman et al.

    Phys. Rev.

    (1978)
    V. Baluni

    Phys. Rev.

    (1978)
    M.B. Kislinger et al.

    Astrophys. J.

    (1978)
  • N.K. Glendenning

    Phys. Rev. Lett.

    (1989)
  • P. Haensel et al.

    Astron. Astrophys.

    (1986)
    C. Alcock et al.

    Astrophys. J.

    (1986)
  • Nucl. Phys. B, to be...
  • M. Prakash et al.

    Phys. Lett.

    (1990)
  • J.I. Kapusta et al.

    Phys. Rev. Lett.

    (1990)
  • B.D. Serot et al.

    Adv. Nucl. Phys.

    (1986)
  • J.D. Bjorken et al.

    Relativistic Quantum Mechanics

    (1964)
  • C.H. Johnson et al.

    Phys. Rev.

    (1987)
  • M.M. Sharma

    Phys. Rev.

    (1988)
  • J. Brodsky et al.

    Phys. Lett.

    (1988)
  • R.L. Jaffe

    Phys. Lett.

    (1989)
  • Cited by (135)

    View all citing articles on Scopus
    1

    We would like to thank the Minnesota Supercomputer Institute for computer grants and T. Walsh and W. Ibes for assistance in using the supercomputers. The work of K.A.O. was supported in part by DOE grant AC02-83ER-40105 and by a Presidential Young Investigator Award, and the work of J.I.K. by DOE grant DE-FG02-87ER40328.

    View full text