Elsevier

Physics Reports

Volume 33, Issue 4, October 1977, Pages 209-284
Physics Reports

Condensation effects of excitons

https://doi.org/10.1016/0370-1573(77)90012-6Get rights and content

Abstract

The theory of the electronic excitations in a highly excited semiconductor is presented. The relaxation processes, the formation of excitons and excitonic molecules, the interaction among the various forms of electronic excitations, as well as their optical and thermodynamical properties are analyzed. At low temperatures one expects condensations into the quantum statistically degenerate phases of the excitonic molecules and of the electron-hole plasma. The physical properties of these low temperature phases are investigated. Possibilities and previous attempts to observe the Bose-Einstein condensation in excitonic systems are discussed critically. The experimental observations of the electron-hole liquid phase transition are reviewed.

References (147)

  • R.S. Knox
  • H. Haken

    Nuovo Cimento

    (1956)
  • T.D. Lee et al.

    Phys. Rev.

    (1953)
  • P.H. Handel et al.
  • W.F. Brinkman et al.

    Phys. Rev.

    (1973)
  • M. Inoue et al.

    J. Phys. Soc. Japan

    (1976)
  • Y. Toyozawa

    Progr. Theor. Phys. Supplement

    (1959)
  • E. Hanamura

    J. Phys. Soc. Japan

    (1975)
    E. Hanamura

    J. Phys. Soc. Japan

    (1975)
  • J.B. Grun et al.
  • E. Göbel et al.

    J. de Physique

    (1974)
  • T. Usui

    Progr. Theor. Phys.

    (1960)
  • H. Stolz et al.
  • P.D. Bloch et al.
  • W.D. Johnston et al.

    Solid State Commun.

    (1974)
  • Ya.E. Pokrovskii

    Phys. Stat. Sol.

    (1972)
  • M. Voos et al.
  • J. Bille

    Festkörperprobleme

    (1973)
  • H. Büttner

    Festkörperprobleme

    (1973)
  • C.D. Jeffries

    Science

    (1975)
  • H. Haken

    Fortschritte der Physik

    (1958)
  • J. Frenkel

    Phys. Rev.

    (1931)
  • G.H. Wannier

    Phys. Rev.

    (1937)
  • Y. Toyozawa

    Progr. Theor. Phys.

    (1954)
  • G. Dresselhaus

    J. Phys. Chem. Solids

    (1956)
  • M.A. Lampert

    Phys. Rev. Letters

    (1958)
  • M. Kotani
  • O. Akimoto et al.

    J. Phys. Soc. Japan

    (1972)
  • T. Inui
  • E.A. Hylleraas et al.

    Phys. Rev.

    (1947)
  • W.F. Brinkman et al.

    Phys. Rev.

    (1973)
  • R.K. Wehner

    Solid State Commun.

    (1969)
  • J. Adamowski et al.

    Solid State Commun.

    (1971)
  • E. Hanamura

    J. Phys. Soc. Japan

    (1975)
  • F. Bassani et al.

    Phys. Stat. Sol.

    (1975)
  • P.P. Schmidt

    J. Phys.

    (1969)
  • J.P. Pollmann et al.

    Solid State Commun.

    (1973)
  • J.P. Pollmann et al.

    Solid State Commun.

    (1975)
  • H. Haug et al.D.B. Tran Thoai

    Z. Physik

    (1977)
  • D. Baeriswyl et al.

    RCA Review

    (1975)
  • J. de Boer
  • S. Permogorov

    Phys. Stat. Sol.

    (1975)
  • H. Haug et al.

    J. Luminescence

    (1976)
  • C. Weisbuch et al.

    J. Luminescence

    (1976)
  • M. Lax

    Phys. Rev.

    (1960)
  • J.J. Hopfield

    Phys. Rev.

    (1958)
  • H. Souma et al.

    J. Phys. Soc. Japan

    (1970)
  • Cited by (362)

    • Origin of the background absorption in carbon nanotubes: Phonon-assisted excitonic continuum

      2022, Carbon
      Citation Excerpt :

      The quantum Fokker-Plank equation is derived assuming that the quasiparticles have either fermionic or bosonic commutation relations. Excitons behave as bosons or fermions in the limit of low or high occupation, respectively [35]. Fig. 1 shows the exciton, phonon, and photon band structure used in this study plotted in helical coordinates.

    View all citing articles on Scopus
    View full text