History and current uses of 224Ra in ankylosing spondylitis and other diseases

https://doi.org/10.1016/0160-4120(93)90272-JGet rights and content

Abstract

During and briefly after World War II, 224Ra was used in a German hospital in combination with platinum and eosin (Peteosthor) for the treatment of tuberculosis and ankylosing spondylitis. The patients, primarily children and juveniles, received repeated intravenous injections of up to 2 MBq 224Ra per injection twice a week for months, sometimes even for years. Injected amounts totalled up to 140 MBq. Following this therapy, an enormous increase in the incidence of bone tumors (56 cases among 900 patients), as well as other lesions was observed. The surviving patients are still under follow-up. Treatment of ankylosing spondylitis with drastically reduced doses of 224Ra, however, was continued up to the recent present and over 1500 patients were so treated in West-German hospitals. This second cohort, exclusively adults, received much lower amounts applied in most cases as one series of 10 weekly injections of about 1 MBq of 224Ra each. This would result in a cumulative alpha-dose of about 0.56 Gy to the marrow-free skeleton of a 70 kg man. These patients have been followed for several years, together with a control group of ankylosing spondylitis patients not treated with radioactive drugs or x-rays. By August 1991, three cases of malignant bone tumors have been observed among the exposed (0.7 – 2.4 cases expected) vs. one case among the controls. Diseases of hematopoietic tissue included leukemias (9 in the exposure group vs. 6 in the control group) and bone marrow failure (12 cases vs. 9). The increase of total leukemias among the exposed, compared to a standard population, is highly significant (9 cases observed vs. 2.8 expected, p < 0.003). Chronic myeloid leukemia, specifically, was elevated in the exposed group (3 cases observed vs. 0.8 expected, p = 0.047) but not in the control group.

References (63)

  • P.A. Reichart

    Radiographic finding in 224Ra-caused dental resorptions

    Int. J. Oral Surg.

    (1979)
  • H. Spiess et al.

    Exostoses induced by 224Ra (ThX) in children

    Eur. J. Pediatr.

    (1979)
  • A. Bertrand et al.

    Use of radium-224 in the treatment of ankylosing spondylitis and rheumatoid synovitis

    Health Phys.

    (1985)
  • G. Best

    Über die funktionelle Therapie bei der Spondylitis ancylopoetica in Verbindung mit Thorium X-Gaben

    Arch. Orthop. Unfall-Chir.

    (1959)
  • A. Bickel

    Weitere Beiträge zur ThX-Therapie bei Anämie, Leukämie und rheumatischen Erkrankungen

    Berliner Klin. Wochenschr.

    (1913)
  • D. Chmelevsky et al.

    Time and dose dependency of bone sarcomas in patients injected with radium-224

    Radiat. Environ. Biophys.

    (1988)
  • D. Chmelevsky et al.

    An epidemiological assessment of lens opafications with impaired vision in patients injected with radium-224

    Radiat. Res.

    (1988)
  • D. Chmelevsky et al.

    The reverse protraction factor in the induction of bone sarcomas in radium-224 patients

    Radiat. Res.

    (1990)
  • O. Diederich

    Klinik und Therapie der Spondylarthritis ankylopoetica-Behandlungsergebnisse mit Thorium X und Corticoiden

  • P. Erlacher

    Zur Behandlung des Morbus Bechterew mit Thorium X. Wien. Klin.

    Wochenschr.

    (1953)
  • J. Forestier et al.

    La Spondylarthrite ankylosante

    (1951)
  • S. Härtling

    Ein Beitrag zur Thorium-X-Therapie bei der Spondylitis ankylosans

  • D. Haunfelder et al.

    Spätschäden am Odonton nach Behandlung mit Thorium X

    Dtsch. J. Mund-Kiefer-Gesichts-Chir.

    (1977)
  • L. Herdt

    Nachuntersuchungen an mit Peteosthor bzw. Thorium X behandelten M. Bechterew-kranken des “Annastifts”

  • F. Hernaman-Johnson

    Thorium X in spondylitis and chronic rheumatism

    Rheumatism

    (1946)
  • H. Honegger

    Strahlenkatarakt nach Peteosthorbehandlung (Thorium X)

    Monatsbl. Augenheilk.

    (1969)
  • E.R. Humphreys et al.

    The induction by 224Ra of myeloid leukemia and osteosarcoma in male CBA mice

    Inter. J. Radiat. Biol.

    (1985)
  • G. Kaiser

    Über die Behandlung des Morbus Bechterew, insbesondere mit Thorium X

    Dtsch. Gesundheitswes.

    (1953)
  • P. Kellermann

    Erfolge und Gefahren bei der Behandlung des Morbus Bechterew mit Thorium X

  • W. Koch et al.

    Die Ergebenisse der intravenösen Thorium X-Behandlung bei der Spondylarthritis ankylopoetica (M. Bechtterew)

    Strahlentherapie

    (1952)
  • W. Koch

    Strahlenbedingte Wachstumsstuörungen der Gliedmassen

  • W. Koch

    Indication for 224Ra-therapy in ankylosing spondylitis (Morbus Strumpell-Bechterew-Marie)

  • G. Kutz

    Zur Behandlung des Morbus Bechterew mit Thorium-X

  • G. Kutz

    Zur Frage von Spätschäden nach der Behandlung mit Thorium-X

    Z. Orthop. Traumat.

    (1963)
  • W. Lentz

    Die Behandlung der Bechterew'schen Erkrankung mit Peteosthor

    Med. Wochenschr.

    (1952)
  • A. Léri et al.

    Traitement des Rhumatismes Chroniques par le Thorium

    Bulletins et mémoires de la Société Médicale des Hôpitaux de Paris

    (1922)
  • P. Louyot et al.

    La thérapeutique médicamenteuse de la spondylarthrite ankylosante

    Rev. Rhum.

    (1970)
  • K.L. Mahlo

    Orales Thorium X als Mittel der Wahl beim Morbus Bechterew

    Dtsch. Med. J.

    (1952)
  • C.W. Mays et al.

    Skeletal effects following 224Ra injections into humans

    Health Phys.

    (1978)
  • C.W. Mays et al.

    Malignancies in patients injected with Radium-224

  • J.M.H. Moll

    Ankylosing spondylitis

    (1980)
  • Cited by (18)

    • Radiobiology of Targeted Alpha Therapy

      2022, Nuclear Medicine and Molecular Imaging: Volume 1-4
    • Carcinogenicity of metal compounds

      2021, Handbook on the Toxicology of Metals: Fifth Edition
    • The impact of barium isotopes in radiopharmacy and nuclear medicine – From past to presence

      2021, Nuclear Medicine and Biology
      Citation Excerpt :

      The heaviest group 2 element radium delivers two isotopes of high relevance for targeted alpha therapy: 223Ra and 224Ra. For a number of decades in the past, 224Ra (t1/2 = 3.6 d) has been applied as SpondylAT® for the treatment of Morbus Bechterew [11,12], but lost its approval in 2006 due to regulatory issues. Moreover, a study with 1471 ankylosing spondylitis patients who have received SpondylAT® pointed out the risk to develop myeloproliferative diseases [13].

    • Carcinogenicity of metal compounds

      2021, Handbook on the Toxicology of Metals: Volume I: General Considerations
    • Radionuclide calibrator responses for <sup>224</sup>Ra in solution and adsorbed on calcium carbonate microparticles

      2020, Applied Radiation and Isotopes
      Citation Excerpt :

      This property leads radium to target osteoblastic bone metastases (Sartor et al., 2013). The bone-seeking property of radium as 224Ra was exploited medically over many years (1950–2005) (Koch, 1978; Kommission Pharmakotherapie, 2001; Wick and Gössner, 1993; Eckert and Ziegler, 2006), although not in cancer therapy but as palliative treatment for ankylosing spondylitis disease. Nowadays, another α-emitting radium isotope, 223Ra-dichloride (Xofigo, Bayer)†, is used for treatment of patients with skeletal metastases from castration-resistant prostate cancer (Kluetz et al., 2014).

    • Primary standardization of <sup>224</sup>Ra activity by liquid scintillation counting

      2020, Applied Radiation and Isotopes
      Citation Excerpt :

      Poor knowledge of the effects of ionizing radiation, particularly on growing and developing tissues, likely account for many of the very serious reported side-effects (e.g., Spiess, 2002). Difficulties were probably also compounded by the lack of a reliable method for measuring activity, which was initially calculated in electrostatic units, an obsolete unit used until 1969 for 224Ra medical dosage (Wick and Gössner, 1993). More recently, a suspension of injectable calcium carbonate microparticles labeled with 224Ra has shown promise in preclinical studies for treatment of cavitary micro-metastatic cancer (Westrøm et al., 2018, 2018b).

    View all citing articles on Scopus
    View full text