Elsevier

Vision Research

Volume 14, Issue 11, November 1974, Pages 1229-1236
Vision Research

Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers

https://doi.org/10.1016/0042-6989(74)90221-1Get rights and content

Abstract

After an observer views an adapting pattern moving uniformly in one direction for a prolonged period of time, a stationary pattern will-appear to move in the opposite direction. In the present experiments observers inspected spatially periodic, adapting patterns which were moved at different speeds in different experimental conditions. The magnitude of the motion aftereffect which was generated in each condition was measured. There was an interaction between pattern characteristics and adapting speed. For a variety of patterns the temporal frequency, rather than the velocity, of the adapting patterns was the critical determinant of aftereffect magnitude. The psychophysical results suggest (1) that the responses of direction-sensitive analyzers in humans are controlled by the temporal frequency of drifting patterns rather than their velocity, and (2) that the peak response frequency of direction-sensitive analyzers is about 5 Hz under low photopic levels of illumination.

Résumé

Quand un sujet regarde une structure d'adaptation qui se déplace uniformément dans une direction donnée pendant une durée prolongée, une structure immobile semble se déplacer en sens inverse. Dans les expériences actuelles, les sujets examinent des structures d'adaptation, spatialement périodiques, qui se déplacent à différentes vitesses dans diverses conditions expérimentales. On mesure la grandeur de l'effet consécutif de mouvement engendré dans chaque condition. Il y a une interaction entre les caractéristiques de la structure et la vitesse d'adaptation. Pour diverses structures la fréquence temporelle d'adaptation est le paramètre critique de la grandeur de l'effet consécutif, plutôt que la vitesse. Ces résultats psychophysiques suggèrent que (1) les réponses des analyseurs sensibles à la direction chez l'homme sont contrôlées par la fréquence des structures en mouvement plutôt que par leur vitesse et (2) la fréquence maximale de réponse des analyseurs sensibles à la direction est d'environ 5 Hz aux bas niveaux photopiques d'éclairage.

Zusammenfassung

Wenn ein Beobachter längere Zeit auf ein Sehding, das sich monoton in einer Richtung bewegt, adaptiert, so scheint ein stationäres Sehding sich in gegenläufiger Richtung zu bewegen.

Bei den vorliegenden Experimenten betrachteten Beobachter Adaptations-Gitter mit verschiedenen Geschwindigkeiten unter unterschiedlichen experimentellen Bedingungen.

Die Grösse des Nacheffekts der Bewegung, der sich stets einstellte, wurde gemessen. Es bestand eine Wechselwirkung zwischen der Sehdingcharakteristika und der Adaptationsgeschwindigkeit. Bei zahlreichen Anordnungen war die Zeitfrequenz des Sehdings-mehr als seine Geschwindigkeitdie kritische Grösse für den Nacheffekt. Die psychophysischen Ergebnisse lassen vermuten: (1) dass die Reizantworten richtungsabhängiger Analysatoren im Menschen stärker durch die zeitliche Frequenz des bewegten Sehdings als durch seine Geschwindigkeit bestimmt sind; und (2) dass das Maximum der Reizantwort dieses richtungsabhängigen Analysators bei ca. 5 Hz unter niedrigem photopischen Beleuchtungsniveau liegt.

Реферат

Пocлe тoгo кaк нaблюдaтeль cмoтpит нa aдaптиpyющий пaттepн, двигaющийcя paвнoмepнo в oднoм нaпpaвлeнии в тeчeниe длитeльнoгo пepиoдa вpeмeни, нeпoдвизный пaттepн бyдeт кaзaтьcя двигaющимcя в пpoтивoпoлoзнoм нaпpaвлeнии. B нacтoящич экcпepимeнтaч. нaблюдaтeли пpиcтaльнo paccмaтpивaли aдaптиpyющий пpocтpaнcтвeнный пaттepн, вoзникaющий пepиoличecки, кoтopый двигaлcя в paзличныч экcпepимeнтaльныч ycлoвияч c paзличнoй cкopocтью. Былa измepeнa вeличнaи пocлeэффeктa двизeния, вoзникaвшeгo в кaздoм из экcпepимeнтaльныч ycлoвий. Meздy aдaптиpyющeй cкopocтвю и чapaктepиcтикaми пaттepнa имeлocь взaимoдeйcтвиe. Пpи paзличныч пaттepнaч чacтoтa вo вpeмeни, a нe cкopocть aдaптиpyющeгo пaттepнa, былa кpитичecкoй oпpeдeляющeй для вeличины пocлeдeйcтвия, Пoлyчeнныe пcичoфизичecкиe peзyльтaты дaют ocнoвaниe пpeдпoлoaгaть: (1) чтo peaкции aнaлизaтopoв чeлoвeкa, чyвcтвитeльныч к нaпpaвлeнию, cкopee кoнтpoлиpyютcя вpeмeннoй чacтoтoй двизyщeгocя пaттepнa, чeм eгo cкopocтью и (2) чтo пик peaкции нa чacтoтy aнaлизaтopoв чyвcтвитeльныч к нaпpaвлeнию, пpи низкoм фoтoпичecкoм ypoвнe ocвeшeния, нaчoдитcя oкoлo 5 гц.

References (14)

There are more references available in the full text version of this article.

Cited by (90)

  • Dynamics of walking adaptation aftereffects induced in static images of walking actors

    2012, Vision Research
    Citation Excerpt :

    With the stimuli in our experiment, it was not possible to differentiate the temporal frequency of the articulation of the walking adapting actor and the speed at which the adapting actor walked, as both simultaneously varied. Measurements of MAEs induced in static test gratings resulting from adaptation to spatial-frequency gratings, show that MAE magnitude is critically dependent upon the temporal-frequency of the adaptor rather than the adaptor speed (Pantle, 1974; Wright & Johnston, 1985). By varying the size on the screen of the walking adapting actor it may be possible to vary the speed of walking whilst maintain walking cycle frequency in order to determine the dependence of the WAE on these two factors.

  • Motion psychophysics: 1985-2010

    2011, Vision Research
    Citation Excerpt :

    This led to a static MAE predominantly induced by the first-order motion and a flicker MAE in the opposite direction produced by the second-order motion. This gave further support to the idea that the static MAE reflects activity in lower-level motion mechanisms, perhaps in V1, while the flicker MAE reveals higher-level motion processing, perhaps in MT. Intriguingly Ashida and Osaka (1995) found that the flicker MAE seemed to depend on the adaptation velocity and not, as is the case with the static MAE (Pantle, 1974), on the adaptation temporal frequency. A dependence on adaptation velocity was exactly what was reported for the velocity aftereffect by Thompson (1981).

  • Influence of viewing distance on aftereffects of moving random pixel arrays

    2003, Vision Research
    Citation Excerpt :

    These results are compatible with our proposal (van de Grind et al., 2001; van der Smagt et al., 1999) that the sMAE and dMAE reflect actions of automatic gain-control processes in a low-speed (form-from-motion) and a high-speed (navigational) motion vision system, respectively. They also fit nicely with earlier findings summarised in Section 1, suggesting that motion sensors tuned to high speeds have large and those tuned to lower speeds have smaller receptive fields (Pantle, 1970, 1974; Watanabe et al., 1968). It was also found from motion detection thresholds for moving sinewaves (Anderson & Burr, 1985) and moving RPAs (van de Grind et al., 1992), that lower spatial frequencies increase high-speed sensitivity and decrease low-speed sensitivity, and vice versa for high spatial frequencies.

  • The stereoscopic (cyclopean) motion aftereffect is dependent upon the temporal frequency of adapting motion

    2001, Vision Research
    Citation Excerpt :

    And if the stereoscopic motion aftereffect is mediated by adaptation of cyclopean motion–energy mechanisms, then the aftereffect should be dependent upon temporal frequency as well. Such an outcome would be qualitatively similar to the results of Pantle (1974), who found that the luminance-domain motion aftereffect, when tested with a static test pattern, is dependent upon the temporal frequency of adapting motion (peak aftereffect=5 cyc s−1). Alternatively, the stereoscopic motion aftereffect may be dependent upon the speed of adaptation.

View all citing articles on Scopus

The first experiment reported in this article was conducted in the Department of Psychology at the University of California, Los Angeles. The second experiment was carried out in the Department of Psychology at Wright State University.

View full text