Review
Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli

https://doi.org/10.1016/0005-2760(94)90113-9Get rights and content

References (150)

  • F.R. Beadle et al.

    J. Biol. Chem.

    (1979)
  • J.F. Binstock et al.

    Methods Enzymol.

    (1981)
  • P.N. Black et al.

    J. Biol. Chem.

    (1985)
  • P.N. Black et al.

    J. Biol. Chem.

    (1987)
  • P.N. Black

    Biochim. Biophys. Acta

    (1990)
  • P.N. Black et al.

    J. Biol. Chem.

    (1992)
  • J.-C. Cortay et al.

    Biochimie

    (1989)
  • J.E. Cronan et al.

    J. Biol. Chem.

    (1988)
  • C.C. DiRusso et al.

    J. Biol. Chem.

    (1992)
  • R.J. Distel et al.

    J. Biol. Chem.

    (1992)
  • G.R. Duncombe et al.

    Arch. Biochem. Biophys.

    (1976)
  • F.E. Frerman

    Arch. Biochem. Biophys.

    (1973)
  • F.E. Frerman et al.

    Arch. Biochem. Biophys.

    (1973)
  • A.J. Fulco

    Prog. Lipid Res.

    (1983)
  • C.L. Ginsburgh et al.

    J. Biol. Chem.

    (1984)
  • A.G. Goodridge
  • P.H.E. Groot et al.

    Adv. Lipid Res.

    (1976)
  • B.C. Hansel et al.

    J. Biol. Chem.

    (1984)
  • W. Hendrickson et al.

    J. Mol. Biol.

    (1990)
  • M.F. Henry et al.

    J. Mol. Biol.

    (1991)
  • M.F. Henry et al.

    Cell

    (1992)
  • M. Hijikata et al.

    J. Biol. Chem.

    (1987)
  • M. Hijikata et al.

    J. Biol. Chem.

    (1990)
  • S. Jackowski et al.

    J. Biol. Chem.

    (1986)
  • S. Jackowski et al.
  • K. Kameda et al.

    J. Biol. Chem.

    (1981)
  • K. Kameda et al.

    Biochim. Biophys. Acta

    (1985)
  • G.B. Kumar et al.

    J. Biol. Chem.

    (1991)
  • G.B. Kumar et al.

    J. Biol. Chem.

    (1993)
  • B. Lugtenberg et al.

    Biochim. Biophys. Acta

    (1983)
  • S.R. Maloy et al.

    J. Biol. Chem.

    (1981)
  • D. Mangroo et al.

    J. Biol. Chem.

    (1992)
  • V.M. McDonough et al.

    J. Biol. Chem.

    (1992)
  • D. Negre et al.

    J. Mol. Biol.

    (1992)
  • E.J. Neufeld et al.

    J. Biol. Chem.

    (1984)
  • W.D. Nunn et al.

    J. Biol. Chem.

    (1979)
  • W.D. Nunn et al.

    J. Biol. Chem.

    (1986)
  • W.J. O'Brien et al.

    Biochim. Biophys. Res Commun.

    (1973)
  • H. Awakawa et al.

    EMBO J.

    (1987)
  • B.J. Bachmann et al.

    Microbiol. Rev.

    (1980)
  • R. Benz

    Ann. Rev. Microbiol.

    (1988)
  • J.F. Binstock et al.
  • P.N. Black

    J. Bacteriol.

    (1988)
  • P.N. Black

    J. Bacteriol.

    (1991)
  • P.N. Black

    J. Bacteriol.

    (1992)
  • A. Bout et al.

    Nucl. Acids. Res.

    (1988)
  • C. Byrne et al.

    Nucl. Acids Res.

    (1988)
  • R. Calmes et al.

    J. Bacteriol.

    (1973)
  • S.S. Chirala
  • T. Chung et al.

    J. Bacteriol.

    (1988)
  • Cited by (121)

    • Polyketide synthases in mycobacterial lipid metabolism

      2022, Biology of Mycobacterial Lipids
    • Vibrio cholerae VC1741 (PsrA) enhances the colonization of the pathogen in infant mice intestines in the presence of the long-chain fatty acid, oleic acid

      2020, Microbial Pathogenesis
      Citation Excerpt :

      In the present study, the cAMP-CRP complex was determined to negatively regulate the expression of vc1741. The fatty acid degradation pathway is primarily responsible for the transport, activation, and β-oxidation of fatty acids [24]. The β-oxidation pathway is involved in the oxidation of the beta carbons and the removal of successive two-carbon fragments from the fatty acid.

    • Unsaturated Lipid Assimilation by Mycobacteria Requires Auxiliary cis-trans Enoyl CoA Isomerase

      2015, Chemistry and Biology
      Citation Excerpt :

      Lipid degradation requires a variety of hydrolases and lipases that release fatty acyl chains, which are then broken down to acetyl coenzyme A (CoA) building blocks by the β-oxidation machinery that consists of five core catalytic functions. This pathway was first characterized in Escherichia coli as the FAD (fatty acid degradation) operon, and is conserved in all living organisms (Black and DiRusso, 1994). Conversion of a fatty acid to its corresponding fatty acyl CoA by FadD (acyl CoA synthetase) initiates the process, which is then acted upon by FadE (acyl CoA dehydrogenase) to generate unsaturation at the α,β position.

    • Proteomic analysis of the response of Escherichia coli to short-chain fatty acids

      2015, Journal of Proteomics
      Citation Excerpt :

      It is this antimicrobial quality that creates a limiting factor in the design of industrial strains with high SCFA productivity and yields [7,8]. Earlier studies have shown that exposure to FAs affects Escherichia coli growth [9,10], suggesting enzyme inhibition, acidification of the cytoplasm, redox imbalances, and cellular membrane damage as potential routes for inhibition [11,12]. Recent efforts to engineer E. coli to produce SCFAs [13,14] have motivated fundamental studies aimed at identifying the toxicity mechanisms of these molecules in E. coli.

    View all citing articles on Scopus
    View full text