Elsevier

Physics Procedia

Volume 20, 2011, Pages 24-46
Physics Procedia

Making Stargates: The Physics of Traversable Absurdly Benign Wormholes

https://doi.org/10.1016/j.phpro.2011.08.003Get rights and content
Under a Creative Commons license
open access

Abstract

Extremely short throat “absurdly benign” wormholes enabling near instantaneous travel to arbitrarily remote locations in both space and time – stargates – have long been a staple of science fiction. The physical requirements for the production of such devices were worked out by Morris and Thorne in 1988. They approached the issue of rapid spacetime transport by asking the question: what constraints do the laws of physics as we know them place on an “arbitrarily advanced culture” (AAC)? Their answer – a Jupiter mass of negative restmass matter in a structure a few tens of meters in size – seems to have rendered such things beyond the realm of the believably achievable. This might be taken as justification for abandoning further serious exploration of the physics of stargates. If such an investigation is pursued, however, one way to do so is to invert Morris and Thorne's question and ask: if “arbitrarily advanced aliens” (AAAs) have actually made stargates, what must be true of the laws of physics for them to have done so? Elementary arithmetic reveals that stargates would have an “exotic” density of on the order of 1022 gm/cm3, that is, orders of magnitude higher than nuclear density. Not only does one have to achieve this stupendous density of negative mass matter, it must be done, presumably, only with the application of “low” energy electromagnetic fields. We examine this problem, finding that a plausible solution does not depend on the laws of quantum gravity, as some have proposed. Rather, the solution depends on understanding the nature of electrons in terms of a semi-classical extension of the exact, general relativistic electron model of Arnowitt, Deser, and Misner (ADM), and Mach's Principle.

Keywords

Stargates
Traversable Wormholes
Negative Matter
Time Machines
Semi-Classical Electron Models

Cited by (0)