Current Biology
Volume 27, Issue 5, 6 March 2017, Pages 697-704
Journal home page for Current Biology

Report
Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors

https://doi.org/10.1016/j.cub.2017.01.019Get rights and content
Under an Elsevier user license
open archive

Highlights

  • Bilateral M-cells activity can drive C-starts and S-starts in tail-elicited startles

  • Caudal sensory neurons excite local caudal inhibitory interneurons

  • Inhibitory interneurons rapidly hyperpolarize local motoneurons

  • Motoneuron inhibition shapes motor output resulting from M-cell spikes

Summary

The reticulospinal Mauthner cells (M-cells) of the startle circuit have been considered to be dedicated to one basic motor output and the C-type startle response in fish. The neural circuit underlying the C-start, a startle behavior in which the fish forms a “C”-shaped body bend has been described in depth in goldfish and zebrafish [1, 2] and is thought to occur in other species [3, 4]. However, previous research has shown that some species can perform a second type of startle called the S-start [5, 6, 7]. This startle response, in which the first movement creates an “S”-shaped body bend achieved with regional muscle activity on left and right sides, cannot be explained by M-cell circuit models. Here we use larval zebrafish to examine the S-start circuit. Since S-starts are elicited through tail stimulation [5, 6, 7] and ablating M-cells abolishes short-latency tail-elicited startles [8, 9], we hypothesized that M-cell activity was necessary for S-start generation. Our findings show that the M-cells fire simultaneously to generate the S-start. However, simultaneous M-cell spikes generated through direct current injection were not sufficient to generate S-starts. Through recordings of motoneurons, inhibitory interneurons, and sensory neurons, we uncover a mechanism for generating alternative startle behaviors; local sensory inputs drive inhibitory interneuron activity, which inhibits caudal motoneurons and pre-conditions their excitability prior to the arrival of M-cell spikes in the tail. We suggest that this motoneuron hyperpolarization can bias motor output to left or right sides, determining whether the fish performs a C-start or an S-start behavior.

Keywords

Mauthner cell
motoneuron
startle
motor control
escape behavior
sensory input
spinal cord
preconditioning
hindbrain
circuitry
descending input

Cited by (0)

2

Present address: Vollum Institute, Oregon Health & Science University, L-474, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA

3

Lead Contact