Skip to main content
Log in

Determination of tetrabromobisphenol A and its brominated derivatives in water, sediment and soil by high performance liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Tetrabromobisphenol A (TBBPA) was typical brominated flame retardant and potential environmental endocrine disruptor, and it had persistence, bioaccumulation and chronic toxicity. Simultaneous determination of ultra-trace TBBPA, tribromobiphenol A (tri-BBPA), dibromobiphenol A (di-BBPA), monobromobisphenol A (mono-BBPA) and bisphenol A (BPA) was developed by high performance liquid chromatography–tandem mass spectrometry(HPLC–MS/MS), the parent ion charge ratios (m/z) had been optimized. The linear range was wider and the limit of detection was (LOD) 0.09 ~ 0.21 ng mL−1, which could detect trace pollutants. The extraction efficiency was improved by optimizing the parameters, HLB cartridge was used in the water sample by solid phase extraction (SPE), the recovery rates in water samples were over 80.28% with three concentration levels, the relative standard deviations (RSD) were less than 7.12%, and the minimum detection limit of the method was 0.90 ~ 2.10 × 10–3 ng mL−1. Soil and sediment samples were extracted by accelerated solvent extraction (ASE), the recovery rates in soil and sediment were over 79.40% and 75.65%, the minimum detection limit was 0.0225 ~ 0.0525 ng g−1, RSD was less than 7.19%. The proffered method was successfully utilized to detect actual samples, the residue of di-BBPA and mono-BBPA are detected in Naihe River and Shuxi River in Tai’an City, residue of di-BBPA and mono-BBPA was detected in the soil, and there was low residual amount of di-BBPA, mono-BBPA and BPA in the sediment of Shuxi River.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Q. Han, W.Y. Dong, H.J. Wang, T.Z. Liu, Y. Tian, X. Song, Chemosphere 198, 92–102 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. M. Gorga, E. Martínez, A. Ginebreda, E. Eljarrat, D. Barceló, Sci. Total Environ. 444, 51–59 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. A.F. Liu, Z.S. Shen, Y. Tian, R.G. Shi, Y. Liu, Z.S. Zhao, M. Xian, J. Chromatogr. 1526, 151–156 (2017)

    Article  CAS  Google Scholar 

  4. L.H. Liu, A.F. Liu, Q.H. Zhang, J.B. Shi, B. He, Z.J. Yun, G.B. Jiang, J. Chrom. A 1497, 81–86 (2017)

    Article  Google Scholar 

  5. J.M. Pahigian, Y.G. Zuo, Chemosphere 207, 469–480 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. P.V.L. Reddy, K.H. Kim, B. Kavitha, V. Kumar, N. Raza, S. Kalagara, J. Environ. Manag. 213, 189–205 (2018)

    Article  CAS  Google Scholar 

  7. E. Lefevre, E. Cooper, H.M. Stapleton, C.K. Gunsch, PLoS ONE 11(7), 0157622 (2017)

    Google Scholar 

  8. S.A. Liu, P.X. Wu, M.Q. Chen, L.F. Yu, C.X. Kang, N.W. Zhu, Z. Dang, Environ. Pollu. 228, 277–286 (2017)

    Article  CAS  Google Scholar 

  9. Q.L. Xie, J.P. Cao, D.K. Sun, H.Q. Lua, M. Xia, B. Hou, D.B. Li, L.T. Jia, J. Mol. Liq. 303, 112501 (2020)

    Article  CAS  Google Scholar 

  10. A. Abdelmonaim, B. Evaristo, Anal. Bioanal. Chem. 408, 231–241 (2016)

    Article  Google Scholar 

  11. C. Cavaliere, A.L. Capriotti, F. Ferraris, P. Foglia, R. Samperi, S. Ventura, A. Laganà, J. Chrom. A 1438, 133–142 (2016)

    Article  CAS  Google Scholar 

  12. A. Kousaiti, J.N. Hahladakis, V. Savvilotidou, K. Pivnenko, K. Tyrovola, N. Xekoukoulotakis, T.F. Astrup, E. Gidarakos, J. Hazard. Mater. 390, 12164 (2020)

    Article  Google Scholar 

  13. N. Vakondios, A.A. Mazioti, E.E. Koukouraki, E. Diamadopoulos, J. Environ. Chem. Eng. 4, 1910–1917 (2016)

    Article  CAS  Google Scholar 

  14. L. Wu, R. Sun, Y.X. Li, C.J. Sun, Trends. Environ. Anal. Chem. 24, e00074 (2019)

    Article  CAS  Google Scholar 

  15. N. Raza, B. Hashemi, K.H. Kim, S.H. Lee, A. Trends, Anal. Chem. 103, 56–73 (2018)

    CAS  Google Scholar 

  16. M. Nedaei, A.R. Zarei, S.A. Ghorbanian, J. Chrom. A 1601, 35–44 (2019)

    Article  CAS  Google Scholar 

  17. W.W. Deng, A.Q. Huang, Q.T. Zheng, L. Yu, X. Li, H.K. Hu, Y.X. Xiao, Food Chem. 352, 129331 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. B. Urs, H. Dorte, H. Dorte, Anal. Chem. 76(2), 441–452 (2004)

    Article  Google Scholar 

  19. Y.C. Liu, D. Wang, F.Y. Du, W.Q. Zheng, Z.M. Liu, Z.G. Xu, X.Z. Hu, H.C. Liu, Microchem. J. 145, 337–344 (2019)

    Article  Google Scholar 

  20. X.M. Wang, J.Y. Liu, Q. Liu, X.Z. Du, G.B. Jiang, Talanta 116, 906–911 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. M. Takazawa, S. Suzuki, T. Nakano, S. Tsunoi, M. Shinomiya, J. Environ. Chem. 27(4), 137–144 (2017)

    Article  CAS  Google Scholar 

  22. H. Liu, W. Gao, Y. Tian, A.F. Liu, Z.H. Wang, Y.Q. Cai, Z.S. Zhao, Talanta 191, 272–276 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Z.H. Chen, H. Yin, H. Peng, G.N. Lu, Z.H. Liu, Z. Dang, Sci. Total Environ. 659, 1352–1361 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. C.C. Li, X.R. Chen, K.B. Wu, S.J. Yu, J. Electroanal. Chem. 770, 39–43 (2016)

    Article  CAS  Google Scholar 

  25. Q. Zhao, K. Zhang, G.X. Yu, W.X. Wu, X.Y. Wei, Q. Lu, Talanta 151, 209–216 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. A. Lestido-Cardama, R. Paseiro-Cerrato, L.K. Ackerman, R. Sendón, A.R.B. de Quirós, Food Packag. Shelf Life 33, 100883 (2022)

    Article  CAS  Google Scholar 

  27. S.W. Yang, Z.G. Yan, F.F. Xu, S.R. Wang, F.C. Wu, Environ. Pollu. 169, 59–63 (2012)

    Article  CAS  Google Scholar 

  28. S.H. Zhang, Y.X. Zhang, G.X. Ji, H.Z. Xu, J.N. Liu, L.L. Shi, Chin. J. Anal. Chem. 44(1), 19–24 (2016)

    Article  Google Scholar 

  29. A.F. Liu, Z.S. Zhao, G.B. Qu, Z.S. Shen, X.F. Liang, J.B. Shi, G.B. Jiang, Trends Anal. Chem. 111, 85–99 (2019)

    Article  CAS  Google Scholar 

  30. A. Iparraguirre, A. Prieto, A. Vallejo, M. Moeder, O. Zuloaga, N. Etxebarria, A. Paschke, Talanta 164, 314–322 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. A. Azizi, C.S. Bottaro, J. Chrom. A 1614, 460603 (2020)

    Article  CAS  Google Scholar 

  32. N. Li, J.J. Du, D. Wu, J.C. Liu, N. Li, Z.W. Sun, G.L. Li, Y.N. Wu, Trends Anal. Chem. 108, 154–166 (2018)

    Article  CAS  Google Scholar 

  33. B. Hashemi, P. Zohrabi, N. Raza, K.H. Kim, Trends Anal. Chem. 97, 65–82 (2017)

    Article  CAS  Google Scholar 

  34. J.M. Wang, J. Xu, X.F. Ji, H.Z. Wu, H. Yang, H. Zhang, X.M. Zhang, Z.G. Li, X.L. Ni, M.G. Qian, J. Chrom. A 1617, 460808 (2020)

    Article  CAS  Google Scholar 

  35. Y.W. Guo, X. Xie, Z.X. Diao, Y.J. Wang, B. Wang, K.Z. Xie, X.T. Wang, P.Y. Zhang, J. Food Compos. Anal. 101, 103979 (2021)

    Article  CAS  Google Scholar 

  36. G.T. Wang, B. Wang, X. Zhao, X. Xie, K.Z. Xie, X.T. Wang, G.X. Zhang, T. Zhang, X.Z. Liu, G.J. Dai, J. Food Compos. Anal. 81, 19–27 (2019)

    Article  CAS  Google Scholar 

  37. R. Ahmad, N. Ahmad, A. Shehzad, Ind. Crop. Prod. 136, 37–49 (2019)

    Article  CAS  Google Scholar 

  38. R. Ahmad, N. Ahmad, A. Shehzad, Food Chem. 309, 125740 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. G. Paula, E. Ethel, B. Damià, Anal. Bioanal. Chem. 397, 2817–2824 (2010)

    Article  Google Scholar 

  40. J. Lan, Z.S. Shen, W. Gao, A.F. Liu, Mar. Pollut. Bull. 149, 110551 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. S.W. Yang, S.R. Wang, H.L. Liu, Z.G. Yan, Environ. Sci. Pollut. Res. 19, 4090–4096 (2012)

    Article  CAS  Google Scholar 

  42. K. Liu, J. Li, S.J. Yan, W. Zhang, Y.J. Li, D.A. Han, Chemosphere 148, 8–20 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China [Nos. 41671321], Key research and development projects in Shandong Province: 2021 CXGC 010801( Research and demonstration of complete set of technology for soil remediation in vegetable fields and orchards).

Funding

Key research and development projects in Shandong Province, 2021 CXGC 010801, hui Xie.

Author information

Authors and Affiliations

Authors

Contributions

HX: Conceptualization, Funding acquisition, Methodology, Supervision, Writing-review & editing. Data, associated metadata, and calculation tools are available from the corresponding author (huixie@sdau.edu.cn). YX: Conceptualization, formal analysis. FS: Formal analysis, data curation, software. JL: Investigation, supervision. RL: Editing.

Corresponding author

Correspondence to Hui Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

All authors have given consent to their contribution.

Consent to publish

All authors have agreed with the content and all have given explicit consent to publish.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Xu, Y., Sun, F. et al. Determination of tetrabromobisphenol A and its brominated derivatives in water, sediment and soil by high performance liquid chromatography–tandem mass spectrometry. ANAL. SCI. 39, 1875–1888 (2023). https://doi.org/10.1007/s44211-023-00393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00393-7

Keywords

Navigation