Skip to main content
Log in

Aggregation-caused dual-signal response of gold nanoclusters for ratiometric optical detection of cysteine

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Designing ratiometric sensors for cysteine (Cys) monitoring with high accuracy is of great significance for disease diagnosis and biomedical studies. The current ratiometric methods mainly rely on multiplex probes, which not only complicates the operation but also increases the cost, making it difficult for quantitative Cys detection in resource-limited areas. Herein, one-pot prepared gold nanoclusters (Au NCs) that glow red fluorescent were synthesized by employing glutathione as the stabilizer and reducing agent. When Fe3+ is present with Au NCs, the fluorescence is quenched and the scattering is strong because of the aggregation of Au NCs. With introduction of Cys, Cys can efficiently compete with glutathione-modified Au NCs for Fe3+, which leads to increase of fluorescence and decrease of scattering. The ratiometric determination of Cys can be thereby realized by collecting the fluorescence and SRS spectrum simultaneously. The linear range for Cys was 5–30 µM with a detection limit of 1.5 µM. In addition, the sensing system exhibits good selectivity for Cys and shows potential application in biological samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. I. Nandi, S. Chall, S. Chowdhury, T. Mitra, S.S. Roy, K. Chattopadhyay, Protein fibril-templated biomimetic synthesis of highly fluorescent gold nanoclusters and their applications in cysteine sensing. ACS Omega 3, 7703–7714 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.H. Stipanuk, J.E. Dominy Jr., J.-I. Lee, R.M. Coloso, Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. J. Nutr. 136, 1652S-1659S (2006)

    Article  CAS  PubMed  Google Scholar 

  3. M.T. Heafield, S. Fearn, G.B. Steventon, R.H. Waring, A.C. Williams, S.G. Sturman, Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci. Lett. 110, 216–220 (1990)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Ozkan, E. Ozkan, B. Simşek, Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int. J. Cardiol. 82, 269–277 (2002)

    Article  PubMed  Google Scholar 

  5. T.S.T. Balamurugan, C.-H. Huang, P.-C. Chang, S.-T. Huang, Electrochemical molecular switch for the selective profiling of cysteine in live cells and whole blood and for the quantification of Aminoacylase-1. Anal. Chem. 90, 12631–12638 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. A. Safavi, R. Ahmadi, F.A. Mahyari, Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode. Amino Acids 46, 1079–1085 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. A.A. Dutov, D.A. Nikitin, A.A. Fedotov, HPLC determination of plasma/serum homocysteine and cysteine with UV detection and solid-phase extraction on a polymeric sorbent. Biomeditsinskaia Khimiia 56, 609–615 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. A. Kamińska, P. Olejarz, K. Borowczyk, R. Głowacki, G. Chwatko, Simultaneous determination of total homocysteine, cysteine, glutathione, and N-acetylcysteine in brain homogenates by HPLC. J. Sep. Sci. 41, 3241–3249 (2018)

    Article  PubMed  Google Scholar 

  9. R. Saletti, S. Reina, M.G.G. Pittalà, R. Belfiore, V. Cunsolo, A. Messina, V. De Pinto, S. Foti, High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3). Biochim. Biophys. Acta Biomembr. 1859, 301–311 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. N. Burford, M.D. Eelman, D.E. Mahony, M. Morash, Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem. Commun. 21, 146–147 (2003)

    Article  Google Scholar 

  11. J. Piechocka, M. Wieczorek, R. Głowacki, Gas chromatography–mass spectrometry based approach for the determination of methionine-related sulfur-containing compounds in human saliva. Int. J. Mol. Sci. 21, 9252 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A.V. Ivanov, E.D. Virus, B.P. Luzyanin, A.A. Kubatiev, Capillary electrophoresis coupled with 1,1′-thiocarbonyldiimidazole derivatization for the rapid detection of total homocysteine and cysteine in human plasma. J. Chromatogr. B. 1004, 30–36 (2015)

    Article  CAS  Google Scholar 

  13. D. Zhang, F. Zhang, Y. Liao, F. Wang, H. Liu, Carbon quantum dots from pomelo peel as fluorescence probes for “turn-off–on” high-sensitivity detection of Fe3+ and L-cysteine. Molecules 27, 4099 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.-N. Wang, J. Zhu, X. Li, J.-J. Li, J.-W. Zhao, Fluorescence turn-on sensing of trace cadmium ions based on EDTA-etched CdTe@CdS quantum dot. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 201, 119–127 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. A. Pundi, C.-J. Chang, J. Chen, S.-R. Hsieh, M.-C. Lee, A dimedone-phenylalanine-based fluorescent sensor for the detection of iron (III), copper (II), L-cysteine, and L-tryptophan in solution and pharmaceutical samples. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 274, 121108 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. S. Han, H. Zhang, X. Yue, J. Wang, L. Yang, B. Wang, X. Song, A ratiometric, fast-responsive, and single-wavelength excited fluorescent probe for the discrimination of Cys and Hcy. Anal. Chem. 93, 10934–10939 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. J.-J. Li, D. Qiao, J. Zhao, G.-J. Weng, J. Zhu, J.-W. Zhao, Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 217, 247–255 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. R. Joseph, Selective detection of Fe3+, F-, and cysteine by a novel triazole-linked decaamine derivative of pillar[5]arene and its metal ion complex in water. ACS Omega 5, 6215–6220 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong, X. Chen, Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47, 2873–2920 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. Meng, K.A. Mirica, Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 50, 13498–13558 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. W. Dong, R. Wang, X. Gong, W. Liang, L. Fan, S. Song, C. Dong, A ratiometric and far-red fluorescence “off-on” sensor for sequential determination of copper(II) and L-histidine based on FRET system between N-acetyl-L-cysteine-capped AuNCs and N, S, P co-doped carbon dots. Microchim. Acta 187, 299 (2020)

    Article  CAS  Google Scholar 

  22. X. Yuan, H. Zhao, F. Bai, P. Zhao, L. Zhao, Z. Xiong, Fluorescence and scattering based dual-optical signals ratiometric sensing and logic gate device for acetylcholinesterase activity assay. Microchem. J. 170, 106768 (2021)

    Article  CAS  Google Scholar 

  23. Z. Wu, H. Yang, S. Pan, H. Liu, X. Hu, Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS Sens. 5, 2211–2220 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. S.G. Liu, N. Li, L. Han, L.J. Li, N.B. Li, H.Q. Luo, Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Spectrochim. Acta A. Mol. Mater. Horiz. 5, 454–460 (2018)

    CAS  Google Scholar 

  25. L.-Y. Chen, C.-W. Wang, Z. Yuan, H.-T. Chang, Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal. Chem. 87, 216–229 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. H.-H. Deng, K.-Y. Huang, M.-J. Zhang, Z.-Y. Zou, Y.-Y. Xu, H.-P. Peng, W. Chen, G.-L. Hong, Sensitive and selective nitrite assay based on fluorescent gold nanoclusters and Fe2+/Fe3+ redox reaction. Food Chem. 317, 126456 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. M. Wang, Z. Yu, H. Feng, J. Wang, L. Wang, Y. Zhang, L. Yin, Y. Du, H. Jiang, X. Wang, J. Zhou, In situ biosynthesized gold nanoclusters inhibiting cancer development via the PI3K–AKT signaling pathway. J. Mater. Chem. B. 7, 5336–5344 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. H. Chen, C. Liu, M. Wang, C. Zhang, N. Luo, Y. Wang, H. Abroshan, G. Li, F. Wang, Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines. ACS Catal. 7, 3632–3638 (2017)

    Article  CAS  Google Scholar 

  29. W. Li, X. Wen, H. Zhao, W. Yan, J.F. Trant, Y. Li, Acid-Triggered self-assembled egg white protein-coated gold nanoclusters for selective fluorescent detection of Fe3+, NO2-, and cysteine. ACS Appl. Nano Mater. 3, 11838–11849 (2020)

    Article  CAS  Google Scholar 

  30. F. Ru, P. Du, X. Lu, Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for “on-off-on” bifunctional detection and cellular imaging of mercury (II) ions and cysteine. Anal. Chim. Acta 1105, 139–146 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Zhang, H. Xu, Y. Chen, X. You, Y. Pu, W. Xu, X. Liao, High-sensitivity detection of cysteine and glutathione using au nanoclusters based on aggregation-induced emission. J. Fluoresc. 30, 1491–1498 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. K. Chen, W. Qing, W. Hu, M. Lu, Y. Wang, X. Liu, On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42−, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 213, 228–234 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. X. Yu, C.-X. Zhang, L. Zhang, Y.-R. Xue, H.-W. Li, Y. Wu, The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sens. Actuators B-Chem. 263, 327–335 (2018)

    Article  CAS  Google Scholar 

  34. Q. Tang, Y.Z. Fan, L. Han, Y.Z. Yang, N.B. Li, H.Q. Luo, Redox induced dual-signal optical sensor of carbon dots/MnO2 nanosheets based on fluorescence and second-order scattering for the detection of ascorbic acid. Microchim Acta 187, 475 (2020)

    Article  CAS  Google Scholar 

  35. D. Liu, X. Pan, W. Mu, C. Li, X. Han, Detection of tetracycline in water using glutathione-protected fluorescent gold nanoclusters. Anal. Sci. 35, 367–370 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. W. Dong, J. Yu, X. Gong, W. Liang, L. Fan, C. Dong, A turn-off-on near-infrared photoluminescence sensor for sequential detection of Fe3+ and ascorbic acid based on glutathione-capped gold nanoclusters. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 247, 119085 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. P.M. Brigham, W.H. Stein, S. Moore, The concentrations of cysteine and cystine in human blood plasma. Clin. Invest. 39, 1633 (1960)

    Article  CAS  Google Scholar 

  38. F.S. Kariapper, F.Y. Thanzeel, L.S. Zandi, C. Wolf, Selective chiroptical sensing of D/L-cysteine. Org. Biomol. Chem. 20, 3056–3060 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Su, L. Qi, X. Mu, M. Wang, A fluorescent probe for sensing ferric ions in bean sprouts based on L-histidine-stabilized gold nanoclusters. Anal. Meth. 7, 684–689 (2015)

    Article  CAS  Google Scholar 

  40. C. Zhang, Y. Gao, N. Yang, T. You, H. Chen, P. Yin, Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185, 90 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding supported by the National Natural Science Foundation of China (No. 81860610) and Jiangxi Provincial Natural Science Foundation (20224BAB216116).

Author information

Authors and Affiliations

Authors

Contributions

L-NH: Conceptualization and writing-original draft; H-TC: Investigation; Y-XF: Formal analysis; L-ZG: Data curation; M-QL: Methodology; KZ: Validation; XM: Writing review & editing; NL: Conceptualization, Writing review & editing, and supervision.

Corresponding authors

Correspondence to Xi Mai or Na Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2936 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, LN., Cao, HT., Feng, YX. et al. Aggregation-caused dual-signal response of gold nanoclusters for ratiometric optical detection of cysteine. ANAL. SCI. 39, 1719–1726 (2023). https://doi.org/10.1007/s44211-023-00385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00385-7

Keyword

Navigation