Skip to main content
Log in

Effect of air bubbles on the membrane filtration of rhodamine B

  • Note
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Effect of air bubbles on the membrane filtration of a basic dye, rhodamine B (RB), using a hydrophilic PTFE membrane filter (pore size: 0.20 μm) was studied. The air bubbles were generated by vigorously mixing the aqueous solution containing 0.05% (v/v) of 1-butanol with a shaft generator of a homogenizer. RB being far smaller than the pore size of the membrane filter could not be rejected without air bubbles, but it was rejected by the membrane filter in the presence of air bubbles. The rejection ratio increased with increasing the rotation speed of the shaft generator because of the increase in the amount of air bubbles and therefore the increase in the surface area of air bubbles for the adsorption of RB. On the other hand, another basic dye, methylene blue (MB), was negligibly rejected in the same condition. Dynamic surface tension measurement of aqueous solutions containing different amounts of dye indicated that RB strongly adsorbed to the air–water interface, while MB hardly adsorbed. The results obtained in the present study strongly suggest the potential usefulness of air bubbles for the selective microfiltration of dissolved organic molecules or ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable for data availability.

References

  1. A.W. Zularisam, A.F. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment: a review. Desalination 194, 211–231 (2006). https://doi.org/10.1016/j.desal.2005.10.030

    Article  CAS  Google Scholar 

  2. S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir, M.Á. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci. Total Environ. 710, 136375 (2020). https://doi.org/10.1016/j.scitotenv.2019.136375

    Article  CAS  PubMed  Google Scholar 

  3. W.J. Lau, A.F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control: a review. Desalination 245, 321–348 (2009). https://doi.org/10.1016/j.desal.2007.12.058

    Article  CAS  Google Scholar 

  4. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliff, N. Hilal, Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015). https://doi.org/10.1016/j.desal.2014.10.043

    Article  CAS  Google Scholar 

  5. W. Pronk, A. Ding, E. Morgenroth, N. Derlon, P. Desmond, M. Burkhardt, B. Wu, A.G. Fane, Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Res. 149, 553–565 (2019). https://doi.org/10.1016/j.watres.2018.11.062

    Article  CAS  PubMed  Google Scholar 

  6. K. Kodama, M. Oiwa, T. Saitoh, Purification of rhodamine B by alcohol-modified air bubble flotation. Bull. Chem. Soc. Jpn. 94, 1210–1214 (2021). https://doi.org/10.1246/bcsj.20200395

    Article  CAS  Google Scholar 

  7. J.-H. Huang, K.-L. Huang, S.-Q. Liu, A.-T. Wang, C. Yan, Adsorption of rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surf. A 330, 55–61 (2008). https://doi.org/10.1016/j.colsurfa.2008.07.050

    Article  CAS  Google Scholar 

  8. C. Pelekani, V.L. Snoeyink, Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon 38, 1423–1436 (2000). https://doi.org/10.1016/S0008-6223(99)00261-4

    Article  CAS  Google Scholar 

  9. Y.S. Cho, J.S. Laskowski, Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 69–80 (2002). https://doi.org/10.1016/S0301-7516(01)00064-3

    Article  CAS  Google Scholar 

  10. Y.S. Moreno, G. Bournival, S. Ata, Classification of flotation frothers: a statistical approach. Chem. Eng. Sci. 248, 117252 (2022). https://doi.org/10.1016/j.ces.2021.117252

    Article  CAS  Google Scholar 

  11. P. Joos, G. Serrien, Adsorption kinetics of lower alkanols at the air, water interface: effects of structure maker, and structure breakers. J. Colloid Inter. Sci. 127, 97–103 (1989). https://doi.org/10.1016/0021-9797(89)90010-6

    Article  CAS  Google Scholar 

  12. L.F. Mottram, S. Forbes, B.D. Ackley, B.R. Peterson, Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans. Beilstein J. Org. Chem. 8, 2156–2165 (2012). https://doi.org/10.3762/bjoc.8.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.S. da Silva, H.C. Junqueira, T.L. Ferreira, Effect of pH and dye concentration on the n-octanol/water distribution ratio of phenothiazine dyes: a microelectrode voltammetry study. Electrochim. Acta 144, 154–160 (2014). https://doi.org/10.1016/j.electacta.2014.08.094

    Article  CAS  Google Scholar 

  14. W.R. Gillap, N.D. Weiner, M. Gibaldi, Ideal behavior of sodium alkyl sulfates in various interfaces. Thermodynamics of adsorption at the air-water interface. J. Phys. Chem. 72, 2218–2222 (1968). https://doi.org/10.1021/j100852a058

    Article  CAS  Google Scholar 

  15. C.-H. Chang, E.I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloid Surf. A 100, 1–45 (1995). https://doi.org/10.1016/0927-7757(94)03061-4

    Article  CAS  Google Scholar 

  16. A.J. Prosser, E.I. Franses, Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models. Colloid Surf. A 178, 1–40 (2001). https://doi.org/10.1016/S0927-7757(00)00706-8

    Article  CAS  Google Scholar 

  17. A. Castro, K. Bhattacharyya, K.B. Eisenthal, Energetics of adsorption of neutral and charged molecules at the air/water interface by second harmonic generation: hydrophobic and solvation effects. J. Chem. Phys. 95, 1310–1315 (1991). https://doi.org/10.1063/1.461113

    Article  CAS  Google Scholar 

  18. T. Gilányi, I. Varga, C. Stubenrauch, R. Mészáros, Adsorption of alkyl trimethylammonium bromides at the air/water interface. J. Colloid Interf. Sci. 317, 395–401 (2008)

    Article  Google Scholar 

  19. P. Jungwirth, D.J. Tobias, Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006). https://doi.org/10.1021/cr0403741

    Article  CAS  PubMed  Google Scholar 

  20. D. Horinek, A. Herz, L. Vrbka, F. Sedlmeier, S.I. Mamatkulov, R.R. Netz, Specific ion adsorption at the air/water interface: the role of hydrophobic solvation. Chem. Phys. Lett. 479, 173–183 (2009). https://doi.org/10.1016/j.cplett.2009.07.077

    Article  CAS  Google Scholar 

  21. R.O. Dunn Jr., J.F. Scamehorn, S.D. Christian, Use of micellar-enhanced ultrafiltration to remove dissolved organics from aqueous streams. Sep. Sci. Technol. 20, 257–284 (1985). https://doi.org/10.1080/01496398508060679

    Article  CAS  Google Scholar 

  22. M.K. Purkait, S. DasGupta, S. De, Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37(1), 81–92 (2004). https://doi.org/10.1016/j.seppur.2003.08.005

    Article  CAS  Google Scholar 

  23. M. Moreno, L.P. Mazur, S.E. Weschenfelder, R.J. Regis, R.A.F. de Souza, B.A. Marinho, A. da Silva, S.M.A.G.U. de Souzaa, A.A.U. de Souza, Water and wastewater treatment by micellar enhanced ultrafiltration: a critical review. J. Water Process Eng. 46, 1574 (2022). https://doi.org/10.1016/j.jwpe.2022.102574

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Challenging Research (Pioneering) (21K19319) and a Grant-in-Aid for Scientific Research (B) (22H02115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Saitoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Thao, N.T.T. & Saitoh, T. Effect of air bubbles on the membrane filtration of rhodamine B. ANAL. SCI. 39, 1601–1605 (2023). https://doi.org/10.1007/s44211-023-00366-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00366-w

Keywords

Navigation