Skip to main content
Log in

Aromatic hydrocarbons extracted by headspace and microextraction methods in water-soluble fractions from crude oil, fuels and lubricants

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Two extraction protocols were developed for the determination of mono- and poly-aromatic hydrocarbons in water-soluble fractions from gasoline, diesel, crude, mineral insulating, and lubricant oils. Development of the procedures was based on clean miniaturized strategies, such as headspace extraction and vortex-assisted dispersive liquid micro-extraction, together with quantification by gas chromatography–mass spectrometry. The mono-aromatic hydrocarbons were extracted using the headspace extraction method. The linear range obtained was 10–500 µg L−1, with r2 > 0.99. Based on the parameters of the analytical curves, detection and quantification limits of 2.56–3.20 and 7.76–9.71 µg L−1 were estimated. In addition, the method showed adequate recoveries of 69.4–83.5%, with a satisfactory precision of 4.7–17.1% (n = 5). Micro-extraction was applied for the poly-aromatics and the most favorable variables were sample volume (5.00 mL) in sodium chloride medium (1%, w/v), trichloromethane as extractor solvent (75 µL), acetone as disperser (925 µL) and vortexing for 1 min. Under these conditions, analytical curves of 0.15–4.00 µg L−1 were obtained and limits of determination and quantification were 0.03–0.15 and 0.09–0.46 µg L−1, respectively. Recovery values of 87.6–124.5% and a maximum relative standard deviation of 18.9% (n = 5) verify satisfactory accuracy and precision. This led to the achievement of enrichment factors for poly-aromatic hydrocarbons of 41–89 times. Finally, the methods were employed in samples of water-soluble fractions for the determination of analytes. The values followed the order: gasoline > diesel > crude > lubricant > mineral insulating oil. These results indicate an increase in lighter fractions, followed by poly-aromatics in more refined products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated in this work can be requested from the corresponding author upon reasonable request.

References

  1. M.D.F. Guadalupe Meniconi et al., Brazilian oil spills chemical characterization—case studies. Environ. Forensics 3, 303–321 (2002)

    Article  Google Scholar 

  2. R.A. Magris, T. Giarrizzo, Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Mar. Pollut. Bull. 153, 110961 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. T. Saeed et al., Effect of environmental factors on photodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-soluble fraction of Kuwait crude oil in seawater. Mar. Environ. Res. 72, 143–150 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. J.M. Neff, S. Ostazeski, W. Gardiner, I. Stejskal, Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. Environ. Toxicol. Chem. 19, 1809–1821 (2000)

    Article  CAS  Google Scholar 

  5. E.J. Cave, S.M. Kajiura, Effect of deepwater horizon crude oil water accommodated fraction on olfactory function in the Atlantic stingray, Hypanus sabinus. Sci. Rep. 8, 1–8 (2018)

    Article  CAS  Google Scholar 

  6. A.P. Negri et al., Acute ecotoxicology of natural oil and gas condensate to coral reef larvae. Sci. Rep. 6, 1–10 (2016)

    Article  Google Scholar 

  7. R.V. Rodrigues et al., Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci. Total Environ. 408, 2054–2059 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. T. Saeed et al., Photodegradation of volatile organic compounds in the water-soluble fraction of Kuwait crude oil in seawater: effect of environmental factors. Water Air Soil Pollut. (2013). https://doi.org/10.1007/s11270-013-1584-3

    Article  Google Scholar 

  9. M. McDougall et al., Proteinaceous nano container encapsulate polycyclic aromatic hydrocarbons. Sci. Rep. 9, 1–10 (2019)

    Article  CAS  Google Scholar 

  10. M.K. Gupta, R. Jain, P. Singh, R. Ch, M.K.R. Mudiam, Determination of urinary PAH metabolites using DLLME hyphenated to injector port silylation and GC-MS-MS. J. Anal. Toxicol. 39, 365–373 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Moliner-Martínez et al., Study of the influence of temperature and precipitations on the levels of BTEX in natural waters. J. Hazard. Mater. 263, 131–138 (2013)

    Article  PubMed  Google Scholar 

  12. I.B. Karačonji, L. Skender, Comparison between dynamic headspace and headspace solid-phase microextraction for gas chromatography of BTEX in urine. Arh. Hig. Rada Toksikol. 58, 421–427 (2007)

    Article  Google Scholar 

  13. A.N. Fernandes, C.D. Gouveia, M.T. Grassi, J.D.S. Crespo, M. Giovanela, Determination of monoaromatic hydrocarbons (BTEX) in surface waters from a brazilian subtropical hydrographic basin. Bull. Environ. Contam. Toxicol. 92, 455–459 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. H.S. Dórea et al., Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe. Braz. Microchem. J. 85, 234–238 (2007)

    Article  Google Scholar 

  15. F.A. Esteve-Turrillas, S. Armenta, S. Garrigues, A. Pastor, M. de la Guardia, Headspace-mass spectrometry determination of benzene, toluene and the mixture of ethylbenzene and xylene isomers in soil samples using chemometrics. Anal. Chim. Acta 587, 89–96 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. J.L. González, A. Pell, M. López-Mesas, M. Valiente, Simultaneous determination of BTEX and their metabolites using solid-phase microextraction followed by HPLC or GC/MS: An application in teeth as environmental biomarkers. Sci. Total Environ. 603–604, 109–117 (2017)

    Article  PubMed  Google Scholar 

  17. N. Akvan, G. Azimi, H. Parastar, Chemometric assisted determination of 16 PAHs in water samples by ultrasonic assisted emulsification microextraction followed by fast high-performance liquid chromatography with diode array detector. Microchem. J. 150, 104056 (2019)

    Article  CAS  Google Scholar 

  18. M. Fernández, S. Clavijo, R. Forteza, V. Cerdà, Determination of polycyclic aromatic hydrocarbons using lab on valve dispersive liquid-liquid microextraction coupled to high performance chromatography. Talanta 138, 190–195 (2015)

    Article  PubMed  Google Scholar 

  19. C. Hutzler, A. Luch, J.G. Filser, Analysis of carcinogenic polycyclic aromatic hydrocarbons in complex environmental mixtures by LC-APPI-MS/MS. Anal. Chim. Acta 702, 218–224 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. K. Dalvand, A. Ghiasvand, Simultaneous analysis of PAHs and BTEX in soil by a needle trap device coupled with GC-FID and using response surface methodology involving Box-Behnken design. Anal. Chim. Acta 1083, 119–129 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. M. Rezaee, Y. Assadi, M.M. Hosseini, Determination of organic compounds in water using dispersive liquid—liquid microextraction. J Chromatogr A 1116, 1–9 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. J. Zheng et al., Vortex- and shaker-assisted liquid-liquid microextraction (VSA-LLME) coupled with gas chromatography and mass spectrometry (GC–MS) for analysis of 16 polycyclic aromatic hydrocarbons (PAHs) in offshore produced water. Water Air Soil Pollut. (2015). https://doi.org/10.1007/s11270-015-2575-3

    Article  Google Scholar 

  23. M.J. George, O.R. Tagwa, K.F. Sichilongo, Extraction of polycyclic aromatic hydrocarbons from aqueous solution using agitation-assisted liquid-liquid microextraction with a floating organic solvent collected via a pasteur pipette. Polycycl. Aromat. Compd. 41, 1–11 (2020)

    Google Scholar 

  24. A. Rubirola, J. Quintana, M.R. Boleda, M.T. Galceran, Analysis of 32 priority substances from EU water framework directive in wastewaters, surface and drinking waters with a fast sample treatment methodology. Int. J. Environ. Anal. Chem. 99, 16–32 (2019)

    Article  CAS  Google Scholar 

  25. M. Lashgari, V. Singh, J. Pawliszyn, A critical review on regulatory sample preparation methods: validating solid-phase microextraction techniques. TrAC Trends Anal. Chem. 119, 115618 (2019)

    Article  CAS  Google Scholar 

  26. F. Portet-Koltalo, K. Oukebdane, L. Robin, F. Dionnet, P.L. Desbène, Quantification of volatile PAHs present at trace levels in air flow by aqueous trapping-SPE and HPLC analysis with fluorimetric detection. Talanta 71, 1825–1833 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. N.F. Leite, P. Peralta-Zamora, M.T. Grassi, Multifactorial optimization approach for the determination of polycyclic aromatic hydrocarbons in river sediments by gas chromatography-quadrupole ion trap selected ion storage mass spectrometry. J. Chromatogr. A 1192, 273–281 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. V. Jalili, A. Barkhordari, A. Ghiasvand, New extraction media in microextraction techniques. A review of reviews. Microchem. J. 153, 104386 (2020)

    Article  CAS  Google Scholar 

  29. V. Jalili, A. Barkhordari, A. Ghiasvand, Liquid-phase microextraction of polycyclic aromatic hydrocarbons: a review. Rev. Anal. Chem. 39, 1–19 (2020)

    Article  CAS  Google Scholar 

  30. M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A 1217, 2342–2357 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. Y.E. Unsal, M. Soylak, M. Tuzen, Ultrasound-assisted ionic liquid-based dispersive liquid–liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV–visible spectrophotometry. Environ. Monit. Assess. 187, 1–8 (2015)

    Article  CAS  Google Scholar 

  32. C.W. Chen, W.C. Hsu, Y.C. Lu, J.R. Weng, C.H. Feng, Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection. Food Chem. 241, 411–418 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. E. Manoli, C. Samara, Polycyclic aromatic hydrocarbons in natural waters: Sources, occurrence and analysis. TrAC Trends Anal. Chem. 18, 417–428 (1999)

    Article  CAS  Google Scholar 

  34. T.H.E.E. Parliament, T.H.E. Council, O.F. The, E. Union, Text with EEA relevance. Off. J. Eur. Commun. 2001, 3–7 (2001)

    Google Scholar 

  35. M.A. Braga et al., Cytotoxicity and enzymatic biomarkers as early indicators of benthic responses to the soluble-fraction of diesel oil. Ecotoxicol. Environ. Saf. 164, 21–31 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. G. Dal Pont et al., Comparative Biochemistry and Physiology, Part C Acute exposure to the water-soluble fraction of gasoline ( WSF G ) a ff ects oxygen consumption, nitrogenous-waste and Mg excretion, and activates anaerobic metabolism in the gold fi sh Carassius auratus. Comp. Biochem. Physiol. Part C 226, 108590 (2019)

    Google Scholar 

  37. Y. Zhang, H.K. Lee, Determination of ultraviolet filters in water samples by vortex-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. J. Chromatogr. A 1249, 25–31 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. J.W. Anderson, An assessment of knowledge concerning the fate and effects of petroleum hydrocarbons in the marine environment, in Marine pollution: functional responses. ed. by W.B. Vernberg, A. Calabrese, F.P. Thurberg, F.J.B.T.-M.P. Vernberg (Academic Press, Cambridge, 1979), pp.3–21

    Chapter  Google Scholar 

  39. L. Guo, S.H. Chia, H.K. Lee, Automated agitation-assisted demulsification dispersive liquid–liquid microextraction. Anal. Chem. 88, 2548–2552 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. W.C. Tseng, P.S. Chen, S.-D. Huang, Optimization of two different dispersive liquid-liquid microextraction methods followed by gas chromatography-mass spectrometry determination for polycyclic aromatic hydrocarbons (PAHs) analysis in water. Talanta 120, 425–432 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. M. Leong, C. Chang, M. Fuh, S. Huang, Low toxic dispersive liquid–liquid microextraction using halosolvents for extraction of polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 1217, 5455–5461 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. M.V. Russo, P. Avino, L. Perugini, I. Notardonato, Fast analysis of nine PAHs in beer by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-ion trap mass spectrometry. RSC Adv. 6, 13920–13927 (2016)

    Article  CAS  Google Scholar 

  43. S. Ozcan, A. Tor, M.E. Aydin, Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography-mass spectrometry. Anal. Chim. Acta 665, 193–199 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. R. Sadeghi, F. Kobarfard, H. Yazdanpanah, S. Eslamizad, M. Bayate, Simultaneous determination of 13 priority polycyclic aromatic hydrocarbons in Tehran’s tap water and water for injection samples using dispersive liquid-liquid micro extraction method and gas chromatography-mass spectrometry. Iran. J. Pharm. Res. 15, 475–481 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Borges, A. Melo, I.M. Ferreira, C. Mansilha, Dispersive liquid–liquid microextraction for the simultaneous determination of parent and nitrated polycyclic aromatic hydrocarbons in water samples. Acta Chromatogr. 30, 119–126 (2018)

    Article  CAS  Google Scholar 

  46. G. Leng, G. Lui, Y. Chen, H. Yin, D. Dan, Vortex-assisted extraction combined with dispersive liquid-liquid microextraction for the determination of polycyclic aromatic hydrocarbons in sediment by high performance liquid chromatography. J. Sep. Sci. 35, 2796–2804 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J. Mol. Liq. 259, 319–339 (2018)

    Article  CAS  Google Scholar 

  48. N. Manousi, G.A. Zachariadis, Recent advances in the extraction of polycyclic aromatic hydrocarbons from environmental samples. Molecules 25, 1–29 (2020)

    Article  Google Scholar 

  49. Edition, T. EURACHEM/CITAC Guide CG 4; Quantifying uncertainty in analytical measurement, 3rd Edition (2012). https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. Acessed 30 Jan 2023

  50. T. Khezeli, A. Daneshfar, R. Sahraei, Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 1425, 25–33 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. P. Avino, I. Notardonato, L. Perugini, M.V. Russo, New protocol based on high-volume sampling followed by DLLME-GC-IT/MS for determining PAHs at ultra-trace levels in surface water samples. Microchem. J. 133, 251–257 (2017)

    Article  CAS  Google Scholar 

  52. L. Tavakoli, Y. Yamini, H. Ebrahimzadeh, S. Shariati, Homogeneous liquid-liquid extraction for preconcentration of polycyclic aromatic hydrocarbons using a water/methanol/chloroform ternary component system. J. Chromatogr. A 1196–1197, 133–138 (2008)

    Article  PubMed  Google Scholar 

  53. M.R. Khalili Zanjani, Y. Yamini, S. Shariati, J.Å. Jönsson, A new liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta 585, 286–293 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, E. Psillakis, AGREEprep—Analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 149, 116553 (2022)

    Article  CAS  Google Scholar 

  55. F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Á.I. López-Lorente et al., The ten principles of green sample preparation. TrAC Trends Anal. Chem. 148, 116530 (2022)

    Article  Google Scholar 

  57. USEPA - United States Environmental Protection Agency, Appendix A to part 136 methods for organic chemical analysis of municipal and industrial wastewater. Method 610—polynuclear aromatic hydrocarbons. USA, Washington DC (1984). https://www.epa.gov/sites/default/files/2015-10/documents/method_610_1984.pdf. Acessed 30 Jan 2023

  58. F.L. Bettim, G.L. Galvan, M.M. Cestari, C.I. Yamamoto, H.C. Silva de Assis, Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. Chemosphere 144, 1467–1474 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. V.S. Pinto, Use of 1H nuclear magnetic resonance and chemometrics to detect the percentage of ethanol anhydrous in Brazilian type C premium gasoline. Fuel 276, 118015 (2020)

    Article  CAS  Google Scholar 

  60. T. Saeed, M. Al-Mutairi, Chemical composition of the watersoluble fraction of the leaded gasolines in seawater. Environ. Int. 25, 117–129 (1999)

    Article  CAS  Google Scholar 

  61. B.H. Hansen, D. Altin, I.B. Øverjordet, T. Jager, T. Nordtug, Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: effects on survival and biomarker response. Sci. Total Environ. 449, 276–284 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. T.M. Pereira et al., Effects of the water-soluble fraction of diesel oil (WSD) on the fertilization and development of a sea urchin (Echinometra lucunter). Ecotoxicol. Environ. Saf. 162, 59–62 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. L. Monteiro, W. Traunspurger, K. Roeleveld, F. Lynen, T. Moens, Direct toxicity of the water-soluble fractions of a crude and a diesel-motor oil on the survival of free-living nematodes. Ecol. Indic. 93, 13–23 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the funding was provided by Petróleo Brasileiro S.A. (Petrobras) (#2012/00201-3) providing a post-doc to RGD. The authors are grateful to “Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas” (INCTAA, proc. 465768/2014-8), “Financiadora de Estudos e Projetos” (FINEP, CTHIDRO 01/2013) and “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq)—Finance Code 0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Garrett Dolatto.

Ethics declarations

Conflict of interest

On behalf of all authors, there is no conflict interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatto, R.G., Pont, G.D., Vela, H.S. et al. Aromatic hydrocarbons extracted by headspace and microextraction methods in water-soluble fractions from crude oil, fuels and lubricants. ANAL. SCI. 39, 573–587 (2023). https://doi.org/10.1007/s44211-023-00274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00274-z

Keywords

Navigation