Skip to main content
Log in

Sample Collection, DNA Extraction, and Library Construction Protocols of the Human Microbiome Studies in the International Human Phenome Project

  • Protocol
  • Published:
Phenomics Aims and scope Submit manuscript

Abstract

The human microbiome plays a crucial role in human health. In the past decade, advances in high-throughput sequencing technologies and analytical software have significantly improved our knowledge of the human microbiome. However, most studies concerning the human microbiome did not provide repeatable protocols to guide the sample collection, handling, and processing procedures, which impedes obtaining valid and timely microbial taxonomic and functional results. This protocol provides detailed operation methods of human microbial sample collection, DNA extraction, and library construction for both the amplicon sequencing-based measurements of the microbial samples from the human nasal cavity, oral cavity, and skin, as well as the shotgun metagenomic sequencing-based measurements of the human stool samples among adult participants. This study intends to develop practical procedure standards to improve the reproducibility of microbiota profiling of human samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statements

Raw sequence data are available in the National Omics Data Encyclopedia under the project ID OEP003565 (https://www.biosino.org/node/project/detail/OEP003565), with sample IDs OES23343-OES23362 (for the skin samples in Fig. 3) and OES23395-OES23397 (for the pure strain sample in Fig. 4).

Abbreviations

SCFAs:

Short-chain fatty acids

PCR:

Polymerase chain reaction

SCF-1:

Specimen collection fluid-1

rRNA:

Ribosomal RNA

ITS:

Internal transcribed spacer

QIIME2:

Quantitative insights into microbial ecology 2

DADA2:

Divisive Amplicon Denoising Algorithm 2

ASVs:

Amplicon sequence variants

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169. https://doi.org/10.1128/mr.59.1.143-169.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apprill A, Mcnally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecol 75(2):129–137. https://doi.org/10.3354/ame01753

    Article  Google Scholar 

  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruslind L (2018) Bacteria: Cell Walls. General Microbiology. Oregon State University, pp 32–37

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou J, Wang L (2021) Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol 11:86. https://doi.org/10.3389/fcimb.2021.625913

    Article  CAS  Google Scholar 

  • Choo JM, Leong LEX, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350. https://doi.org/10.1038/srep16350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung F-E, Kultima JR, Hayward MR, Coelho LP, Allen-Vercoe E, Bertrand L, Blaut M, Brown JRM, Carton T, Cools-Portier S, Daigneault M, Derrien M, Druesne A, de Vos WM, Finlay BB, Flint HJ, Guarner F, Hattori M, Heilig H, Luna RA, van Hylckama Vlieg J, Junick J, Klymiuk I, Langella P, Le Chatelier E, Mai V, Manichanh C, Martin JC, Mery C, Morita H, O'Toole PW, Orvain C, Patil KR, Penders J, Persson S, Pons N, Popova M, Salonen A, Saulnier D, Scott KP, Singh B, Slezak K, Veiga P, Versalovic J, Zhao L, Zoetendal EG, Ehrlich SD, Dore J, Bork P (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35(11):1069−1076. https://doi.org/10.1038/nbt.3960

  • Dalile B, Oudenhove LV, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478. https://doi.org/10.1038/s41575-019-0157-3

    Article  PubMed  Google Scholar 

  • Darwish N, Shao J, Schreier LL, Proszkowiec-Weglarz M (2021) Choice of 16S ribosomal RNA primers affects the microbiome analysis in chicken ceca. Sci Rep 11(1):11848. https://doi.org/10.1038/s41598-021-91387-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer S, Stauber R (2015) The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev 44(17):6094–6121. https://doi.org/10.3389/10.1039/c5cs00217f

    Article  CAS  PubMed  Google Scholar 

  • Dore J, Ehrlich SD, Levenez F, Pelletier E, Alberti A, Bertrand L, Bork P, Costea PI, Sunagawa S, Guarner F, Manichanh C, Santiago A, Zhao L, Shen J, Zhang C, Versalovic J, Luna RA, Petrosino J, Yang H, Li S, Wang J, Allen‐Vercoe E, Gloor G, Singh B, IHMS Consortium (2015) IHMS_SOP 06 V1: Standard operating procedure for fecal samples DNA extraction, Protocol Q. International Human Microbiome Standards. http://www.microbiome-standards.org/

  • Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Becker J, Benjamin B, Blakesley R, Bouffard G, Brooks S, Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J, Hargrove A, Ho S-l, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C, Maskeri B, McDowell J, Montemayor C, Mullikin J, Park M, Riebow N, Schandler K, Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P, Vemulapalli M, Young A, Kong HH, Segre JA, Program NIHISCCS (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454):367–370. https://doi.org/10.1038/nature12171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilén B-M (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 8(10):e76431. https://doi.org/10.1371/journal.pone.0076431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrema H, Niess JH (2020) Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia 63(12):2533–2547. https://doi.org/10.1007/s00125-020-05268-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8:1–22. https://doi.org/10.3389/fmicb.2017.01561

    Article  Google Scholar 

  • Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10(1):5029. https://doi.org/10.1038/s41467-019-13036-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166(3):1063–1068. https://doi.org/10.1111/j.1469-8137.2005.01376.x

    Article  CAS  PubMed  Google Scholar 

  • Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ, Krishnamurthy B, Nefzger CM, Macia L, Thorburn A, Baxter AG, Morahan G, Wong LH, Polo JM, Moore RJ, Lockett TJ, Clarke JM, Topping DL, Harrison LC, Mackay CR (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562. https://doi.org/10.1038/ni.3713

    Article  CAS  PubMed  Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18(5):1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  CAS  PubMed  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.5555/1953048.2078195

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  • Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD (2018) ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7:1418. https://doi.org/10.12688/f1000research.15704.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12(1):87. https://doi.org/10.1186/s12915-014-0087-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinson LF, Keelan JA, Payne MS (2019) Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. Lett Appl Microbiol 68(1):2–8. https://doi.org/10.1111/lam.13091

    Article  CAS  PubMed  Google Scholar 

  • Tourlousse DM, Narita K, Miura T, Sakamoto M, Ohashi A, Shiina K, Matsuda M, Miura D, Shimamura M, Ohyama Y, Yamazoe A, Uchino Y, Kameyama K, Arioka S, Kataoka J, Hisada T, Fujii K, Takahashi S, Kuroiwa M, Rokushima M, Nishiyama M, Tanaka Y, Fuchikami T, Aoki H, Kira S, Koyanagi R, Naito T, Nishiwaki M, Kumagai H, Konda M, Kasahara K, Ohkuma M, Kawasaki H, Sekiguchi Y, Terauchi J (2021) Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome 9(1):95. https://doi.org/10.1186/s40168-021-01048-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein MM, Prem A, Jin M, Tang S, Bhasin JM (2019) FIGARO: an efficient and objective tool for optimizing microbiome rRNA gene trimming parameters. bioRxiv:610394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424690/

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkowski M, Weeks TL, Hazen SL (2020) Gut microbiota and cardiovascular disease. Circ Res 127(4):553–570. https://doi.org/10.1161/CIRCRESAHA.120.316242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Liu X, Kong F-Q, Duan Y-Y, Yee AL, Kim M, Galzote C, Gilbert JA, Quan Z-X (2019) Age and mothers: potent influences of children’s skin microbiota. J Investig Dermatol 139(12):2497−2505. https://doi.org/10.1016/j.jid.2019.05.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants enrolled for their generous supports. We thank Ms. Yimeng Wu from the College of Foreign Languages and Literature at Fudan University for the language editing and proofreading of this article.

Funding

This study was supported by the National Key Research and Development Program of China (2021YFA1301000) and the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YTW, RYZ, YNP, YJP, CL, YRW, XMW and DQW completed the whole procedures of sample collection, DNA extraction, library construction and pilot studies of the protocol. Data collection and analysis were performed by DQW and YRW. The first draft of the manuscript was written by YTW and all authors commented on previous versions of the manuscript. YZ, ZXQ and GPZ provided insightful suggestions to improve the framework and enrich the content of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhexue Quan or Yan Zheng.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committees of the School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China, and carried out following the principles of the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from each participant before enrollment.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3612 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, R., Pu, Y. et al. Sample Collection, DNA Extraction, and Library Construction Protocols of the Human Microbiome Studies in the International Human Phenome Project. Phenomics 3, 300–308 (2023). https://doi.org/10.1007/s43657-023-00097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43657-023-00097-y

Keywords

Navigation