Skip to main content
Log in

BODIPY-fused uracil: synthesis, photophysical properties, and applications

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescent nucleobase and nucleic acid analogs are important tools in chemical and molecular biology as fluorescent labelling of nucleobases has applications in cellular imaging and anti-tumor activity. Boron-dipyrromethene (BODIPY) dyes exhibiting high brightness and good photostability are extensively used as fluorescent labelling agents and as type II photosensitizers for photodynamic therapy. Thus, the combination of nucleobases and BODIPY to obtain new compounds with both anti-tumor activity and fluorescent imaging functions is the focus of our research. We synthesized two new nucleobase analogs 1 and 2 by fusing the BODIPY core directly with uracil which resulted in favorable photophysical properties and high emission quantum efficiencies particularly in organic solvents. Further, we explored the newly synthesized derivatives, which possessed good singlet oxygen generation efficiencies and bio-compatibility, as potential PDT agents and our results show that they exhibit in vitro anti-tumor activities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available from the corresponding author upon request.

References

  1. Fan, W., Yung, B., Huang, P., & Chen, X. (2017). Chemical Reviews, 117, 13566–13638.

    CAS  PubMed  Google Scholar 

  2. American Cancer Society. (2014). Cancer Facts & Figures. Atlanta: American Cancer Society.

  3. Yang, Y.-S., Carney, R. P., Stellacci, F., & Irvine, D. J. (2014). ACS Nano, 8, 8992–9002.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., Huang, W., Chen, P., Shao, J., Dong, X. (2017). ACS Applied Materials & Interfaces, 9, 40077–40086.

    CAS  Google Scholar 

  5. Soriano, J., Mora-Espí, I., Alea-Reyes, M. E., Pérez-García, L., Barrios, L., Ibáñez, E., & Nogués, C. (2017).  Scientific Reports, 7, 41340.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Legraverend, M., & Grierson, D. S. (2006). Bioorganic and Medicinal Chemistry, 14, 3987–4006.

    CAS  PubMed  Google Scholar 

  7. Pałasz, A., & Cież, D. (2015). European Journal of Medicinal Chemistry, 97, 582–611.

    PubMed  Google Scholar 

  8. Wan, J.-Y., Yao, H., Zhang, C.-F., Huang, W.-H., Zhang, Q., Liu, Z., Bi, Y., Williams, S., Wang, C.-Z., & Yuan, C.-S. (2018). Journal of Applied Biomedicine, 16, 311–319.

    PubMed  PubMed Central  Google Scholar 

  9. Amin, L. H. T., Shawer, T. Z., El-Naggar, A. M., & El-Sehrawi, H. M. A. (2019). Bioorganic Chemistry, 91, 103159.

    PubMed  Google Scholar 

  10. Bakavoli, M., Bagherzadeh, G., Vaseghifar, M., Shiri, A., Pordel, M., Mashreghi, M., Pordeli, P., & Araghi, M. (2010). European Journal of Medicinal Chemistry, 45, 647–650.

    CAS  PubMed  Google Scholar 

  11. Rashad, A. E., Hegab, M. I., Abdel-Megeid, R. E., Micky, J. A., & Abdel-Megeid, F. M. E. (2008). Bioorganic and Medicinal Chemistry, 16, 7102–7106.

    CAS  PubMed  Google Scholar 

  12. Meng, G., Liu, Y., Zheng, A., Chen, F., Chen, W., De Clercq, E., Pannecouque, C., & Balzarini, J. (2014). European Journal of Medicinal Chemistry, 82, 600–611.

    CAS  PubMed  Google Scholar 

  13. Zhuang, J., & Ma, S. (2020). ChemMedChem, 15, 1875–1886.

    CAS  PubMed  Google Scholar 

  14. Mohamed, M. S., Kamel, R., & Fathallah, S. S. (2011). Archiv der Pharmazie, 344, 830–839.

    CAS  PubMed  Google Scholar 

  15. Rashid, H. U., Martines, M. A. U., Duarte, A. P., Jorge, J., Rasool, S., Muhammad, R., Ahmad, N., & Umar, M. N. (2021). RSC Advances, 11, 6060–6098.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shelton, J., Lu, X., Hollenbaugh, J. A., Cho, J. H., Amblard, F., & Schinazi, R. F. (2016). Chemical Reviews, 116, 14379–14455.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, Y.-H., Ro, E. J., Yoon, J.-S., Mizutani, T., Kang, D.-W., Park, J.-C., Kim, T. I., Clevers, H., Choi, K.-Y. (2020). Nature Communications, 11, 5321.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, P., Xu, N., Tan, C., Liu, L., Tan, Y., Chen, Z., Jiang, Y. (2017). ACS Applied Materials & Interfaces, 9, 10512–10518.

    CAS  Google Scholar 

  19. Shirasu, H., Kawakami, T., Hamauchi, S., Tsushima, T., Todaka, A., Yokota, T., Yamazaki, K., Fukutomi, A., Onozawa, Y., & Yasui, H. (2021). Journal of Clinical Oncology, 39, 407–407.

    Google Scholar 

  20. Lakkakula, J. R., Krause, R. W. M., Divakaran, D., Barage, S., & Srivastava, R. (2021). Journal of Molecular Liquids, 341, 117262.

    CAS  Google Scholar 

  21. Xu, W., Chan, K. M., & Kool, E. T. (2017). Nature Chemistry, 9, 1043–1055.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su, X., Xiao, X., Zhang, C., & Zhao, M. (2012). Applied Spectroscopy, 66, 1249–1262.

    ADS  CAS  PubMed  Google Scholar 

  23. Wang, K., Huang, J., Yang, X., He, X., & Liu, J. (2013). The Analyst, 138, 62–71.

    ADS  CAS  PubMed  Google Scholar 

  24. Yu, H., Chao, J., Patek, D., Mujumdar, R., Mujumdar, S., & Waggoner, A. S. (1994). Nucleic Acids Research, 22, 3226–3232.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thoresen, L. H., Jiao, G.-S., Haaland, W. C., Metzker, M. L., & Burgess, K. (2003). Chemistry—A European Journal, 9, 4603–4610.

    CAS  PubMed  Google Scholar 

  26. Shi, R., Huang, L., Duan, X., Sun, G., Yin, G., Wang, R., & Zhu, J. (2017). Analytica Chimica Acta, 988, 66–73.

    CAS  PubMed  Google Scholar 

  27. Li, Y., Yang, L., Du, M., & Chang, G. (2019). The Analyst, 144, 1260–1264.

    ADS  CAS  PubMed  Google Scholar 

  28. Alamudi, S. H., Su, D., Lee, K. J., Lee, J. Y., Belmonte-Vázquez, J. L., Park, H. S., Peña-Cabrera, E., & Chang, Y. T. (2018). Chemical Science, 9, 2376–2383.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deore, P. S., Soldatov, D. V., & Manderville, R. A. (2018). Scientific Reports, 8, 16874.

    ADS  PubMed  PubMed Central  Google Scholar 

  30. Zu, Y., Zhao, M., Zou, L., Wu, L., Xie, M., Yang, T., Liu, S., Huang, W., & Zhao, Q. (2018). ACS Applied Materials and Interfaces, 10(51), 44324–44335.

    Google Scholar 

  31. Lai, Y.-C., & Chang, C.-C. (2014). Journal of Material Chemistry B, 2, 1576–1583.

    CAS  Google Scholar 

  32. Kue, C. S., Ng, S. Y., Voon, S. H., Kamkaew, A., Chung, L. Y., Kiew, L. V., & Lee, H. B. (2018). Photochemical and Photobiological Sciences, 17, 1691–1708.

    CAS  PubMed  Google Scholar 

  33. Xu, C., Shao, T., Shao, S., & Jin, G. (2021). Bioorganic Chemistry, 140, 105121–105132.

    Google Scholar 

  34. Güixens-Gallardo, P., Zawada, Z., Matyašovský, J., Dziuba, D., Pohl, R., Kraus, T., & Hocek, M. (2018). Bioconjugate Chemistry, 29, 3906–3912.

    PubMed  Google Scholar 

  35. Bhat, K. L., Zimmerman, M. N., Nemeroff, N. H., & Bock, C. W. (2000). Heterocycles, 53, 205.

    Google Scholar 

  36. Carvalho, C. M. B., Fujita, M. A., Brocksom, T. J., & de Oliveira, K. T. (2013). Tetrahedron, 69, 9986–9993.

    CAS  Google Scholar 

  37. Qin, W., Rohand, T., Baruah, M., Stefan, A., Van der Auweraer, M., Dehaen, W., & Boens, N. (2006). Chemical Physics Letters, 420, 562–568.

    ADS  CAS  Google Scholar 

  38. Caruso, E., Banfi, S., Leva, B., & Orlandi, V. T. (2012). Journal of Photochemistry and Photobiology B: Biology, 114, 44–51.

    CAS  PubMed  Google Scholar 

  39. Piskorz, J., Dlugaszewska, J., Porolnik, W., Teubert, A., & Mielcarek, J. (2020). Dyes and Pigments, 178, 108322.

    CAS  Google Scholar 

  40. Wang, J., Hou, Y., Lei, W., Zhou, Q., Li, C., Zhang, B., & Wang, X. (2012). ChemPhysChem, 13, 2739–2747.

    CAS  PubMed  Google Scholar 

  41. Banfi, S., Caruso, E., Zaza, S., Mancini, M., Gariboldi, M. B., & Monti, E. (2012). Journal of Photochemistry and Photobiology B: Biology, 114, 52–60.

    CAS  PubMed  Google Scholar 

  42. Prasannan, D., Raghav, D., Sujatha, S., Kumar, H. H., Rathinasamy, K., & Arunkumar, C. (2016). RSC Advances, 6, 80808–80824.

    ADS  CAS  Google Scholar 

  43. Descalzo, A. B., Ashokkumar, P., Shen, Z., & Rurack, K. (2020). ChemPhotoChem, 4, 120–131.

    CAS  Google Scholar 

  44. Takizawa, S., Aboshi, R., & Murata, S. (2011). Photochemical and Photobiological Sciences, 10, 895–903.

    CAS  PubMed  Google Scholar 

  45. Adarsh, N., Shanmugasundaram, M., Avirah, R. R., & Ramaiah, D. (2012). Chemistry—A European Journal, 18, 12655–12662.

    CAS  PubMed  Google Scholar 

  46. Batat, P., Cantuel, M., Jonusauskas, G., Scarpantonio, L., Palma, A., O’Shea, D. F., & McClenaghan, N. D. (2011). Journal of Physical Chemistry A, 115, 14034–14039.

    ADS  CAS  PubMed  Google Scholar 

  47. Bassan, E., Gualand, A., Cozzi, P. G., & Ceroni, P. (2021). Chemical Science, 12, 6607–6628.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Agazzi, M. L., Ballatore, M. B., Durantini, A. M., Durantini, E. N., & Tomé, A. C. (2019). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 21–48.

    CAS  Google Scholar 

  49. Piskorz, J., Porolnik, W., Kucinska, M., Dlugaszewska, J., Murias, M., & Mielcarek, J. (2021). ChemMedChem, 16, 399–411.

    CAS  PubMed  Google Scholar 

  50. Rastogi, R. P., Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Biochemical and Biophysical Research Communications, 397, 603–607.

    CAS  PubMed  Google Scholar 

  51. Wang, H., & Joseph, J. A. (1999). Free Radical Biology and Medicine, 27, 612–616.

    CAS  PubMed  Google Scholar 

  52. Brouwer, A. M. (2011). Pure and Applied Chemistry, 83, 2213–2228.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, New Delhi (BT/PR18559/BRB/10/1512/2016) and the Department of Science and Technology, New Delhi (SR/WOS-A/CS114/2017(G)) for financial support, and the Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh for analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash P. Neelakandan.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2509 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagpal, A., Tyagi, N. & Neelakandan, P.P. BODIPY-fused uracil: synthesis, photophysical properties, and applications. Photochem Photobiol Sci 23, 365–376 (2024). https://doi.org/10.1007/s43630-023-00524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00524-z

Keywords

Navigation