Skip to main content
Log in

Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light has a very important function in the regulation of the normal physiology including the neuroendocrine system, biological rhythms, cognitive behavior, etc. The variation in photoperiod acts as a stressor due to imbalance in endogenous hormones. Estrogen and its receptors ER alpha and beta play a vital role in the control of stress response in birds. The study investigates the estrogenic effects of a well-known medicinal plant Withania somnifera (WS), mediated by estrogen receptor alpha (ERα) in the hypothalamic pre-optic area (POA) and paraventricular nuclei (PVN). Further the study elucidates its anti-oxidants and anti-apoptotic activities in the brain of Japanese quail. To validate this hypothesis, mature male quails were exposed to long day length for 3 months and then transferred to intermediate day length to become photorefractory (PR) while controls were still continued under long daylength. Supplementation of WS root extract in PR quail increases plasma estrogen and lowers corticosterone. Further, in PR quail the variation in light downregulates immunoreactivity of ERα, oxidative stress and antioxidant enzyme activities i.e. superoxide dismutase and catalase in the brain. Neuronal apoptosis was observed in the POA and PVN of PR quail as indicated by the abundant expression of Caspase-3 and p53 which reduces after the administration of WS root extract. The neuronal population also found to decrease in PR although it increased in WS administered quails. Further, the study concluded that change in photoperiod from 3 months exposure of 16L: 8D to 13.5L: 10.5D directly activates neuronal apoptosis via expression of Caspase3 and p53 expression in the brain and increases neuronal and gonadal oxidative stress while WS root extract reverses them via enhanced estrogen and its receptor ERα expression in the hypothalamic pre-optic and PVN area of Japanese quail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the paper.

Abbreviations

POA:

Pre-optic area

PVN:

Paraventricular nuclei

ir-ERα:

Immunoreactivity of estrogen receptor alpha

ir-Caspase-3:

Immunoreactivity of Caspase-3

ir-p53:

Immunoreactivity of p53

WS:

Withania somnifera

References

  1. Walton, J. C., Weil, Z. M., & Nelson, R. J. (2011). Influence of photoperiod on hormones, behavior, and immune function. Frontiers in Neuroendocrinology, 32(3), 303–319.

    CAS  PubMed  Google Scholar 

  2. Dawson, A., King, V. M., Bentley, G. E., & Ball, G. F. (2001). Photoperiodic control of seasonality in birds. Journal of Biological Rhythms, 16(4), 365–380.

    CAS  PubMed  Google Scholar 

  3. Banerjee, S., & Chaturvedi, C. M. (2017). Apoptotic mechanism behind the testicular atrophy in photorefractory and scotosensitive quail: Involvement of GnIH induced p-53 dependent Bax-Caspase-3 mediated pathway. Journal of Photochemistry and Photobiology, B: Biology, 176, 124–135.

    CAS  PubMed  Google Scholar 

  4. Chaturvedi, C. M., Bhatt, R., & Phillips, D. (1993). Photoperiodism in Japanese quail (Coturnix coturnix japonica) with special reference to relative refractoriness. Indian Journal of Experimental Biology, 31, 417–421.

    CAS  PubMed  Google Scholar 

  5. Boon, P., Visser, G. H., & Daan, S. (2000). Effect of photoperiod on body weight gain, and daily energy intake and energy expenditure in Japanese quail (Coturnix c. Japonica). Physiology and Behavior, 70(3–4), 249–260.

    CAS  PubMed  Google Scholar 

  6. Shinomiya, A., Shimmura, T., Nishiwaki-Ohkawa, T., & Yoshimura, T. (2014). Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Frontiers in Endocrinology, 5, 12.

    PubMed  PubMed Central  Google Scholar 

  7. Small, T. W., Sharp, P. J., Bentley, G. E., Millar, R. P., Tsutsui, K., Mura, E., & Deviche, P. (2008). Photoperiod-independent hypothalamic regulation of luteinizing hormone secretion in a free-living sonoran desert bird, the Rufous-winged Sparrow (Aimophila carpalis). Brain, Behavior and Evolution, 71(2), 127–142.

    PubMed  Google Scholar 

  8. Srivastava, R., Cornett, L. E., & Chaturvedi, C. M. (2018). Impact of estrogen and photoperiod on arginine vasotocin and VT3 receptor expression in the shell gland of quail. Frontiers in Bioscience-Scholar, 10(2), 372–385.

    Google Scholar 

  9. Griffin, C., Flouriot, G., Sharp, P., Greene, G., & Gannon, F. (2001). Distribution analysis of the two chicken estrogen receptor-alpha isoforms and their transcripts in the hypothalamus and anterior pituitary gland. Biology of Reproduction, 65(4), 1156–1163.

    CAS  PubMed  Google Scholar 

  10. Camacho-Arroyo, I., González-Arenas, A., González-Agüero, G., Guerra-Araiza, C., & González-Morán, G. (2003). Changes in the content of progesterone receptor isoforms and estrogen receptor alpha in the chick brain during embryonic development. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 136(2), 447–452.

    Google Scholar 

  11. Axelsson, J., Mattsson, A., Brunström, B., & Halldin, K. (2007). Expression of estrogen receptor-α and-β mRNA in the brain of Japanese quail embryos. Developmental Neurobiology, 67(13), 1742–1750.

    CAS  PubMed  Google Scholar 

  12. Baghel, K., & Srivastava, R. (2020). Effect of estrogen and stress on estrogen receptor 1 in the HPG axis of immature male Gallus gallus domesticus: Involvement of anti-oxidant system. Theriogenology, 155, 98–113.

    CAS  PubMed  Google Scholar 

  13. Hamilton, K. J., Hewitt, S. C., Arao, Y., & Korach, K. S. (2017). Estrogen hormone biology. Current Topics in Developmental Biology, 125, 109–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baghel, K., & Srivastava, R. (2020). Stress and steroid interaction modulates expression of estrogen receptor alpha in the brain, pituitary, and testes of immature Gallus gallus domesticus. Stress, 24(6), 931–944.

    Google Scholar 

  15. Degterev, A., & Yuan, J. (2008). Expansion and evolution of cell death programmes. Nature reviews Molecular cell biology, 9(5), 378–390.

    CAS  PubMed  Google Scholar 

  16. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bortner, C. D., Oldenburg, N. B., & Cidlowski, J. A. (1995). The role of DNA fragmentation in apoptosis. Trends in Cell Biology, 5(1), 21–26.

    CAS  PubMed  Google Scholar 

  18. Zmasek, C. M., & Godzik, A. (2013). Evolution of the animal apoptosis network. Cold Spring Harbor Perspectives in Biology, 5(3), a008649.

    PubMed  PubMed Central  Google Scholar 

  19. Earnshaw, W. C., Martins, L. M., & Kaufmann, S. H. (1999). Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annual Review of Biochemistry, 68(1), 383–424.

    CAS  PubMed  Google Scholar 

  20. Mazumder, S., Plesca, D., & Almasan, A. (2008). Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Apoptosis and Cancer, 2008, 13–21.

    Google Scholar 

  21. Assuncao Guimaraes, C., & Linden, R. (2004). Programmed cell deaths: Apoptosis and alternative deathstyles. European Journal of Biochemistry, 271(9), 1638–1650.

    PubMed  Google Scholar 

  22. Chi, H., Chang, H. Y., & Sang, T. K. (2018). Neuronal cell death mechanisms in major neurodegenerative diseases. International Journal of Molecular Sciences, 19(10), 3082.

    PubMed  PubMed Central  Google Scholar 

  23. Gorman, A. M. (2008). Neuronal cell death in neurodegenerative diseases: Recurring themes around protein handling. Journal of Cellular and Molecular Medicine, 12(6a), 2263–2280.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Moujalled, D., Strasser, A., & Liddell, J. R. (2021). Molecular mechanisms of cell death in neurological diseases. Cell Death and Differentiation, 28(7), 2029–2044.

    PubMed  PubMed Central  Google Scholar 

  25. Götz, R., Karch, C., Digby, M. R., Troppmair, J., Rapp, U. R., & Sendtner, M. (2000). The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and apoptosis in PC12 cells. Human Molecular Genetics, 9(17), 2479–2489.

    PubMed  Google Scholar 

  26. Kermer, P., Liman, J., Weishaupt, J. H., & Bähr, M. (2004). Neuronal apoptosis in neurodegenerative diseases: From basic research to clinical application. Neurodegenerative Diseases, 1(1), 9–19.

    PubMed  Google Scholar 

  27. Bharti, V. K., Malik, J. K., & Gupta, R. C. (2016). Ashwagandha: Multiple health benefits. In Nutraceuticals (pp. 717–733). Academic Press.

  28. Niranjan, M. K., & Srivastava, R. (2019). Expression of estrogen receptor alpha in developing brain, ovary and shell gland of Gallus gallus domesticus: Impact of stress and estrogen. Steroids, 146, 21–33.

    CAS  PubMed  Google Scholar 

  29. Antony, B., Benny, M., Kuruvilla, B. T., Gupta, N. K., Sebastian, S., & Jacob, S. (2018). Acute and sub chronic toxicity studies of purified Withania somnifera extract in rats. International Journal of Pharmacy and Pharmaceutical Research, 10, 41–46.

    CAS  Google Scholar 

  30. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394.

    CAS  PubMed  Google Scholar 

  31. Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.

    CAS  PubMed  Google Scholar 

  32. Blanchamp, C., & Fridovich, I. (1971). Superoxide dismutage: Improved assays and an assay applicable to acrylamyde gels. Analytical Biochemistry, 44, 276–287.

    Google Scholar 

  33. Gupta, V., & Srivastava, R. (2022). 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochemical and Biophysical Research Communications, 629, 61–70.

    CAS  PubMed  Google Scholar 

  34. Aebi, H. E. (1983). Catalase in methods of enzymatic analyses (pp. 673–684). Academic Press.

    Google Scholar 

  35. Baghel, K., Niranjan, M. K., & Srivastava, R. (2020). Water and food restriction decreases immunoreactivity of oestrogen receptor alpha and antioxidant activity in testes of sexually mature Coturnix coturnix japonica. Journal of Animal Physiology and Animal Nutrition, 104(6), 1738–1747.

    CAS  PubMed  Google Scholar 

  36. Baghel, K., & Srivastava, R. (2021). Photoperiod dependent expression of estrogen receptor alpha in testes of Japanese quail: Involvement of Withania somnifera in apoptosis amelioration. Biochemical and Biophysical Research Communications, 534, 957–996.

    CAS  PubMed  Google Scholar 

  37. Lin, H., Decuypere, E., & Buyse, J. (2004). Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), 737–744.

    CAS  Google Scholar 

  38. Ohmoto, M., Shibuya, Y., Taniguchi, S., Nakade, T., Nomura, M., Ikeda-Matsuo, Y., & Daikoku, T. (2020). Protective effects of butein on corticosterone-induced cytotoxicity in Neuro2A cells. IBRO Reports, 8, 82–90.

    PubMed  PubMed Central  Google Scholar 

  39. Schoch, K. M., Madathil, S. K., & Saatman, K. E. (2012). Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics, 9(2), 323–337.

    PubMed  PubMed Central  Google Scholar 

  40. Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J., & Strasser, A. (2018). How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death and Differentiation, 25(1), 104–113.

    CAS  PubMed  Google Scholar 

  41. Niranjan, M. K., Koiri, R. K., & Srivastava, R. (2021). Expression of estrogen receptor alpha in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: Involvement of anti-oxidant system and estrogen. Stress, 24(3), 261–272.

    CAS  PubMed  Google Scholar 

  42. Behl, C., Widmann, M., Trapp, T., & Holsboer, F. (1995). 17-β estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochemical and Biophysical Research Communications, 216(2), 473–482.

    CAS  PubMed  Google Scholar 

  43. Bhattacharya, A., Ghosal, S., & Bhattacharya, S. K. (2001). Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. Journal of Ethnopharmacology, 74(1), 1–6.

    CAS  PubMed  Google Scholar 

  44. Durg, S., Dhadde, S. B., Vandal, R., Shivakumar, B. S., & Charan, C. S. (2015). Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. Journal of Pharmacy and Pharmacology, 67(7), 879–899.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sophisticated Instrumental Center Facility, Dr. Harisingh Gour Central University, Sagar, MP (India) for providing confocal microscopy and Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar for infrastructure facility.

Author information

Authors and Affiliations

Authors

Contributions

KB: Methodology, Formal analysis, Investigation, Writing—original draft. MKN: Methodology. RS: Conceptualization, Writing—review and editing, Visualization, Supervision.

Corresponding author

Correspondence to Rashmi Srivastava.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghel, K., Niranjan, M.K. & Srivastava, R. Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 22, 2205–2218 (2023). https://doi.org/10.1007/s43630-023-00442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00442-0

Keywords

Navigation