Skip to main content

Advertisement

Log in

RNA-Seq-based transcriptomics analysis during the photodynamic therapy of primary cells in secondary hyperparathyroidism

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to identify changes in gene expression before and after 5-aminolevulinic acid-mediated photodynamic therapy (5-ALA-PDT) and to investigate the potential mechanism of 5-ALA-PDT based on ribonucleic acid sequencing (RNA-Seq) analysis.

Methods

Secondary hyperparathyroidism (SHPT) primary cells were isolated from surgically excised specimens and exposed to laser light. The transcription profiles of SHPT primary cells were identified through RNA-Seq. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to validate genes based on RNA-Seq results.

Results

In total, 1320 DEGs were identified, of which 1019 genes were upregulated and 301 genes were downregulated. GO and KEGG pathway analyses identified significantly enriched pathways in DEGs, including TGF beta in extracellular matrix (ECM), negative regulation of triglyceride biosynthetic process, protein heterodimerization activity, systemic lupus erythematosus, ECM–receptor interaction, focal adhesion and protein digestion and absorption. Protein–protein interaction (PPI) network analyses identified potential heat shock protein (HSP) interactions among the DEGs. Eight HSP genes were also identified that were most likely involved in 5-ALA-PDT, which were further validated by RT-qPCR and western blotting.

Conclusions

The findings of this descriptive study reveal changes in the transcriptome profile during 5-ALA-PDT, suggesting that gene expression and mutation, signaling pathways, and the molecular network are altered in SHPT primary cells. The above findings provide new insight for further studies on the mechanisms underlying 5-ALA-PDT in SHPT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to privacy.

References

  1. Bureo, J. C., Arévalo, J. C., Antón, J., Adrados, G., Jiménez Morales, J. L., & Robles, N. R. (2015). Prevalence of secondary hyperparathyroidism in patients with stage 3 and 4 chronic kidney disease seen in internal medicine. Endocrinologia y nutricion: Organo de la Sociedad Espanola de Endocrinologia y Nutricion, 62, 300–305. https://doi.org/10.1016/j.endonu.2015.05.006

    Article  PubMed  Google Scholar 

  2. Komaba, H., Kakuta, T., & Fukagawa, M. (2011). Diseases of the parathyroid gland in chronic kidney disease. Clinical and Experimental Nephrology, 15, 797–809. https://doi.org/10.1007/s10157-011-0502-5

    Article  CAS  PubMed  Google Scholar 

  3. Joy, M.S., Karagiannis, P.C., Peyerl, F.W. (2007). Outcomes of secondary hyperparathyroidism in chronic kidney disease and the direct costs of treatment. Journal of Managed Care Pharmacy (JMCP), 13, 397–411. https://doi.org/10.18553/jmcp.2007.13.5.397

  4. Schneider, R., & Bartsch, D. K. (2015). Role of surgery in the treatment of renal secondary hyperparathyroidism. The British Journal of Surgery, 102, 289–290. https://doi.org/10.1002/bjs.9661

    Article  CAS  PubMed  Google Scholar 

  5. Yuan, Q., Liao, Y., Zhou, R., Liu, J., Tang, J., & Wu, G. (2019). Subtotal parathyroidectomy versus total parathyroidectomy with autotransplantation for secondary hyperparathyroidism: An updated systematic review and meta-analysis. Langenbeck’s Archives of Surgery, 404, 669–679. https://doi.org/10.1007/s00423-019-01809-7

    Article  PubMed  Google Scholar 

  6. Steffen, L., Moffa, G., Müller, P. C., & Oertli, D. (2019). Secondary hyperparathyroidism: Recurrence after total parathyroidectomy with autotransplantation. Swiss Medical Weekly, 149, w20160. https://doi.org/10.4414/smw.2019.20160

    Article  CAS  PubMed  Google Scholar 

  7. Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., et al. (2018). Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomedicine and Pharmacotherapy = Biomedecine and Pharmacotherapie, 106, 1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

  8. Wilson, B. C., & Patterson, M. S. (2008). The physics, biophysics and technology of photodynamic therapy. Physics in Medicine and Biology, 53, R61-109. https://doi.org/10.1088/0031-9155/53/9/r01

    Article  CAS  PubMed  Google Scholar 

  9. Huang, Z., Xu, H., Meyers, A. D., Musani, A. I., Wang, L., Tagg, R., Barqawi, A. B., & Chen, Y. K. (2008). Photodynamic therapy for treatment of solid tumors—Potential and technical challenges. Technology in Cancer Research and Treatment, 7, 309–320. https://doi.org/10.1177/153303460800700405

    Article  CAS  PubMed  Google Scholar 

  10. Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., et al. (2011). Photodynamic therapy of cancer: an update. CA: A Cancer Journal for Clinicians, 61, 250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  Google Scholar 

  11. Yang, X., Palasuberniam, P., Kraus, D., & Chen, B. (2015). Aminolevulinic acid-based tumor detection and therapy: Molecular mechanisms and strategies for enhancement. International Journal of Molecular Sciences, 16, 25865–25880. https://doi.org/10.3390/ijms161025865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Casas, A. (2020). Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Letters, 490, 165–173. https://doi.org/10.1016/j.canlet.2020.06.008

    Article  CAS  PubMed  Google Scholar 

  13. Garg, A. D., Nowis, D., Golab, J., & Agostinis, P. (2010). Photodynamic therapy: Illuminating the road from cell death towards anti-tumour immunity. Apoptosis: An International Journal on Programmed Cell Death, 15, 1050–1071. https://doi.org/10.1007/s10495-010-0479-7

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, T., Numata, T., & Shibuya, M. (2011). Intraoperative photodynamic detection of normal parathyroid glands using 5-aminolevulinic acid. The Laryngoscope, 121, 1462–1466. https://doi.org/10.1002/lary.21857

    Article  CAS  PubMed  Google Scholar 

  15. Takeuchi, S., Shimizu, K., Shimizu, K., Jr., Akasu, H., Okamura, R. (2014). Identification of pathological and normal parathyroid tissue by fluorescent labeling with 5-aminolevulinic acid during endocrine neck surgery. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi, 81, 84–93. https://doi.org/10.1272/jnms.81.84

  16. Zeng, L., Zou, Q., Huang, P., Xiong, L., Cheng, Y., Chen, Q., Li, Y., He, H., et al. (2021). Inhibition of autophagy with Chloroquine enhanced apoptosis induced by 5-aminolevulinic acid-photodynamic therapy in secondary hyperparathyroidism primary cells and organoids. Biomedicine and Pharmacotherapy = Biomedecine and Pharmacotherapie, 142, 111994. https://doi.org/10.1016/j.biopha.2021.111994

  17. Abo-Zeid, M. A. M., Abo-Elfadl, M. T., & Mostafa, S. M. (2018). Photodynamic therapy using 5-aminolevulinic acid triggered DNA damage of adenocarcinoma breast cancer and hepatocellular carcinoma cell lines. Photodiagnosis and Photodynamic Therapy, 21, 351–356. https://doi.org/10.1016/j.pdpdt.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England), 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  Google Scholar 

  19. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England), 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  Google Scholar 

  20. Cingolani, P., Platts, A., le Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., et al. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4, P3.

    Article  PubMed  Google Scholar 

  22. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., & Snel, B. (2003). STRING: A database of predicted functional associations between proteins. Nucleic Acids Research, 31, 258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  23. Yun, C. W., Kim, H. J., Lim, J. H., & Lee, S. H. (2019). Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells, 9, 60. https://doi.org/10.3390/cells9010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuehlke, A. D., Beebe, K., Neckers, L., & Prince, T. (2015). Regulation and function of the/human HSP90AA1 gene. Gene, 570, 8–16. https://doi.org/10.1016/j.gene.2015.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188. https://doi.org/10.1093/carcin/bgt111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, B., Shen, S., Fu, S., & Fu, J. (2022). HSPA6 and its role in cancers and other diseases. Molecular Biology Reports, 49, 10565–10577. https://doi.org/10.1007/s11033-022-07641-5

    Article  CAS  PubMed  Google Scholar 

  27. [27] Muppidi, V., Meegada, S. R., & Rehman, A. (2022). Secondary hyperparathyroidism. In StatPearls, StatPearls Publishing Copyright© 2022. Treasure Island, FL: StatPearls Publishing LLC.

  28. Moe, S. M., & Drüeke, T. B. (2003). Management of secondary hyperparathyroidism: The importance and the challenge of controlling parathyroid hormone levels without elevating calcium, phosphorus, and calcium-phosphorus product. American Journal of Nephrology, 23, 369–379. https://doi.org/10.1159/000073945

    Article  CAS  PubMed  Google Scholar 

  29. Mizobuchi, M., Ogata, H., & Koiwa, F. (2019). Secondary hyperparathyroidism: Pathogenesis and latest treatment. Therapeutic Apheresis and Dialysis: Official Peer-Reviewed Journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy, 23, 309–318. https://doi.org/10.1111/1744-9987.12772

    Article  PubMed  Google Scholar 

  30. National Kidney Foundation. (2003). K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 42(Suppl. 3), S1–S202.

  31. Komaba, H., Nakamura, M., & Fukagawa, M. (2017). Resurgence of parathyroidectomy: Evidence and outcomes. Current Opinion in Nephrology and Hypertension, 26, 243–249. https://doi.org/10.1097/mnh.0000000000000326

    Article  PubMed  Google Scholar 

  32. Steinl, G. K., & Kuo, J. H. (2021). Surgical management of secondary hyperparathyroidism. Kidney International Reports, 6, 254–264. https://doi.org/10.1016/j.ekir.2020.11.023

    Article  PubMed  Google Scholar 

  33. Tominaga, Y., Matsuoka, S., Uno, N., & Sato, T. (2008). Parathyroidectomy for secondary hyperparathyroidism in the era of calcimimetics. Therapeutic Apheresis and Dialysis: Official Peer-Reviewed Journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy, 12(Suppl 1), S21-26. https://doi.org/10.1111/j.1744-9987.2008.00627.x

    Article  PubMed  Google Scholar 

  34. Olson, J. A., Jr., & Leight, G. S., Jr. (2002). Surgical management of secondary hyperparathyroidism. Advances in Renal Replacement Therapy, 9, 209–218. https://doi.org/10.1053/jarr.2002.34840

    Article  PubMed  Google Scholar 

  35. Sitges-Serra, A., Lorente-Poch, L., & Sancho, J. (2018). Parathyroid autotransplantation in thyroid surgery. Langenbeck’s Archives of Surgery, 403, 309–315. https://doi.org/10.1007/s00423-018-1654-5

    Article  PubMed  Google Scholar 

  36. Miyakogawa, T., Kanai, G., Tatsumi, R., Takahashi, H., Sawada, K., Kakuta, T., & Fukagawa, M. (2017). Feasibility of photodynamic therapy for secondary hyperparathyroidism in chronic renal failure rats. Clinical and Experimental Nephrology, 21, 563–572. https://doi.org/10.1007/s10157-016-1335-z

    Article  CAS  PubMed  Google Scholar 

  37. Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 17, 657–674. https://doi.org/10.1038/s41571-020-0410-2

    Article  PubMed  Google Scholar 

  38. Manyak, M. J., Russo, A., Smith, P. D., & Glatstein, E. (1988). Photodynamic therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 6, 380–391. https://doi.org/10.1200/jco.1988.6.2.380

    Article  CAS  PubMed  Google Scholar 

  39. Allison, R. R. (2014). Photodynamic therapy: Oncologic horizons. Future Oncology (London, England), 10, 123–124. https://doi.org/10.2217/fon.13.176

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Q., & Li, L. (2018). Photodynamic combinational therapy in cancer treatment, Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, 23, 561–567.

  41. Fink, C., Enk, A., & Gholam, P. (2015). Photodynamic therapy—Aspects of pain management. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology: JDDG, 13, 15–22. https://doi.org/10.1111/ddg.12546

  42. Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood Education and Practice Edition, 98, 236–238. https://doi.org/10.1136/archdischild-2013-304340

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, S. T., & Kim, J. (2016). Trends in next-generation sequencing and a new era for whole genome sequencing. International Neurourology Journal, 20, S76-83. https://doi.org/10.5213/inj.1632742.371

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kiriakidou, M., & Ching, C. L. (2020). Systemic lupus erythematosus, Annals of Internal Medicine, 172, Itc81–Itc96. https://doi.org/10.7326/aitc202006020

  46. Liu, C., Wang, Z., Hu, X., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhu, P., et al. (2021). 5-Aminolevulinic acid combined with sodium ferrous citrate ameliorated lupus nephritis in a mouse chronic graft-versus-host disease model. International Immunopharmacology, 96, 107626. https://doi.org/10.1016/j.intimp.2021.107626

  47. Cho, H. Y., Nasir, H. H., & Sobrin, L. (2014). Focal laser photocoagulation and photodynamic therapy for lupus choroidopathy. Lupus, 23, 412–416. https://doi.org/10.1177/0961203314522339

    Article  CAS  PubMed  Google Scholar 

  48. Kelty, C. J., Brown, N. J., Reed, M. W., & Ackroyd, R. (2002). The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochemical and Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 1, 158–168. https://doi.org/10.1039/b201027p

    Article  CAS  PubMed  Google Scholar 

  49. Wang, S. B., Chen, Z. X., Gao, F., Zhang, C., Zou, M. Z., Ye, J. J., Zeng, X., & Zhang, X. Z. (2020). Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials, 234, 119772. https://doi.org/10.1016/j.biomaterials.2020.119772

  50. Pacheco-Soares, C., Maftou-Costa, M., da Cunha Menezes Costa, C. G., de Siqueira Silva, A. C., & Moraes, K. (2014). Evaluation of photodynamic therapy in adhesion protein expression. Oncology Letters, 8, 714–718. https://doi.org/10.3892/ol.2014.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, T. H., Chen, C. T., Wang, C. P., & Lou, P. J. (2007). Photodynamic therapy suppresses the migration and invasion of head and neck cancer cells in vitro. Oral Oncology, 43, 358–365. https://doi.org/10.1016/j.oraloncology.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  52. Casas, A., Sanz-Rodriguez, F., Di Venosa, G., Rodriguez, L., Mamone, L., Blázquez, A., Jaén, P., Batlle, A., et al. (2008). Disorganisation of cytoskeleton in cells resistant to photodynamic treatment with decreased metastatic phenotype. Cancer Letters, 270, 56–65. https://doi.org/10.1016/j.canlet.2008.04.029

    Article  CAS  PubMed  Google Scholar 

  53. Persadmehr, A., Torneck, C. D., Cvitkovitch, D. G., Pinto, V., Talior, I., Kazembe, M., Shrestha, S., McCulloch, C. A., et al. (2014). Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. Journal of Endodontics, 40, 703–709. https://doi.org/10.1016/j.joen.2013.11.004

    Article  PubMed  Google Scholar 

  54. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, a004978. https://doi.org/10.1101/cshperspect.a004978

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saini, J., & Sharma, P. K. (2018). Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Current Drug Targets, 19, 1478–1490. https://doi.org/10.2174/1389450118666170823121248

    Article  CAS  PubMed  Google Scholar 

  56. Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38, 226–256. https://doi.org/10.1016/j.tips.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  57. Banerjee Mustafi, S., Chakraborty, P. K., Dey, R. S., & Raha, S. (2009). Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress and Chaperones, 14, 579–589. https://doi.org/10.1007/s12192-009-0109-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, X., Jiang, L., Liu, F., Chen, Y., Xu, L., Li, D., Ma, Y., Li, H., et al. (2016). Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 32, 474–482. https://doi.org/10.3109/02656736.2016.1147617

    Article  CAS  PubMed  Google Scholar 

  59. Gomer, C. J., Ryter, S. W., Ferrario, A., Rucker, N., Wong, S., & Fisher, A. M. (1996). Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Research, 56, 2355–2360.

    CAS  PubMed  Google Scholar 

  60. Luna, M. C., Ferrario, A., Wong, S., Fisher, A. M., & Gomer, C. J. (2000). Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Research, 60, 1637–1644.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants 82270834, 81873640 and 82000756) and the Fundamental Research Funds for the Central Universities of Central South University (Grant 202ZTS0950).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiongyan Zou or Wenjun Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ying Wen, Liyun Zeng, Qitong Chen, Yitong Li, Mengdie Fu, Zixin Wang, Hong Liu, Xiejia Li, Peng Huang, Wei Wu, Qiongyan Zou, Wenjun Yi has been approved by all authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zeng, L., Chen, Q. et al. RNA-Seq-based transcriptomics analysis during the photodynamic therapy of primary cells in secondary hyperparathyroidism. Photochem Photobiol Sci 22, 905–917 (2023). https://doi.org/10.1007/s43630-023-00361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00361-0

Keywords

Navigation