Skip to main content
Log in

Monochromatic visible lights modulate the timing of pre-adult developmental traits in Drosophila melanogaster

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light exposure impacts several aspects of Drosophila development including the establishment of circadian rhythms, neuroendocrine regulation, life-history traits, etc. Introduction of artificial lights in the environment has caused almost all animals to develop ecological and physiological adaptations. White light which comprises different lights of differing wavelengths shortens the lifespan in fruit flies Drosophila melanogaster. The wavelength-specific effects of white light on Drosophila development remains poorly understood. In this study, we show that different wavelengths of white light differentially modulate Drosophila development in all its concomitant stages when maintained in a 12-h light: 12-h dark photoperiod. We observed that exposure to different monochromatic lights significantly alters larval behaviours such as feeding rate and phototaxis that influence pre-adult development. Larvae grown under shorter wavelengths of light experienced an altered feeding rate. Similarly, larvae were found to avoid shorter wavelengths of light but were highly attracted to the longer wavelengths of light. Most of the developmental processes were greatly accelerated under the green light regime while in other light regimes, the effects were highly varied. Interestingly, pre-adult survivorship remained unaltered across all light regimes but light exposure was found to show its impact on sex determination. Our study for the first time reveals how different wavelengths of white light modulate Drosophila development which in the future might help in developing non-invasive therapies and effective pest measures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zordan, M., Costa, R., Macino, G., Fukuhara, C., & Tosini, G. (2000). Circadian clocks: What makes them tick? Chronobiology International, 17(4), 433–451. https://doi.org/10.1081/cbi-100101056

    Article  CAS  PubMed  Google Scholar 

  2. Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S., & Johnson, C. H. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8660–8664. https://doi.org/10.1073/pnas.95.15.8660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, J. D., Lin, Y. C., & Hsiao, S. T. (2010). Obesity and high blood pressure of 12-hour night shift female clean-room workers. Chronobiology International, 27(2), 334–344. https://doi.org/10.3109/07420520903502242

    Article  CAS  PubMed  Google Scholar 

  4. Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410(6826), 363–366. https://doi.org/10.1038/35066567

    Article  CAS  PubMed  Google Scholar 

  5. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48(20), 2042–2051. https://doi.org/10.1016/j.visres.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  6. Dominoni, D. M., & Nelson, R. J. (2018). Artificial light at night as an environmental pollutant: An integrative approach across taxa, biological functions, and scientific disciplines. Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology, 329(8–9), 387–393. https://doi.org/10.1002/jez.2241

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blume, C., Garbazza, C., & Spitschan, M. (2019). Effects of light on human circadian rhythms, sleep and mood. Somnologie: Schlafforschung und Schlafmedizin = Somnology: Sleep Research and Sleep Medicine, 23(3), 147–156. https://doi.org/10.1007/s11818-019-00215-x

    Article  PubMed  Google Scholar 

  8. Shen, J., Zhu, X., Gu, Y., Zhang, C., Huang, J., & Xiao, Q. (2019). Toxic effect of visible light on drosophila life span depending on diet protein content. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 74(2), 163–167. https://doi.org/10.1093/gerona/gly042

    Article  CAS  PubMed  Google Scholar 

  9. West, K. E., Jablonski, M. R., Warfield, B., Cecil, K. S., James, M., Ayers, M. A., Maida, J., Bowen, C., Sliney, D. H., Rollag, M. D., Hanifin, J. P., & Brainard, G. C. (2011). Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of Applied Physiology (Bethesda, MD), 110(3), 619–626. https://doi.org/10.1152/japplphysiol.01413.2009

    Article  Google Scholar 

  10. De Magalhaes Filho, C. D., Henriquez, B., Seah, N. E., Evans, R. M., Lapierre, L. R., & Dillin, A. (2018). Visible light reduces C. elegans longevity. Nature Communications, 9(1), 927. https://doi.org/10.1038/s41467-018-02934-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen, L. S., Wu, H. Y., Hsiao, L. J., Shih, C. H., & Hsu, J. C. (2021). LED light improved by an optical filter to visible solar-like light with high color rendering. Coatings, 11(7), 763.

    Article  CAS  Google Scholar 

  12. Tsao, J. Y., Coltrin, M. E., Crawford, M. H., & Simmons, J. A. (2010). Solid-state lighting: An integrated human factors, technology, and economic perspective. IEEE., 98, 1162–1179.

    Article  Google Scholar 

  13. Nash, T. R., Chow, E. S., Law, A. D., Fu, S. D., Fuszara, E., Bilska, A., Bebas, P., Kretzschmar, D., & Giebultowicz, J. M. (2019). Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila. NPJ Aging and Mechanisms of Disease, 5, 8. https://doi.org/10.1038/s41514-019-0038-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen, J., Yang, P., Luo, X., Li, H., Xu, Y., Shan, J., Yang, Z., & Liang, B. (2021). Green light extends Drosophila longevity. Experimental Gerontology, 147, 111268. https://doi.org/10.1016/j.exger.2021.111268

    Article  PubMed  Google Scholar 

  15. Lazopulo, S., Lazopulo, A., Baker, J. D., & Syed, S. (2019). Daytime colour preference in Drosophila depends on the circadian clock and TRP channels. Nature, 574(7776), 108–111. https://doi.org/10.1038/s41586-019-1571-y

    Article  CAS  PubMed  Google Scholar 

  16. Krittika, S., & Yadav, P. (2022). Alterations in lifespan and sleep:wake duration under selective monochromes of visible light in Drosophila melanogaster. Biology Open, 11(7), bio059273. https://doi.org/10.1242/bio.059273

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hamblin, M. R. (2019). Photobiomodulation for Alzheimer’s disease: Has the light dawned? Photonics, 6(3), 77. https://doi.org/10.3390/photonics6030077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, L. F., Patwardhan, A. M., Jain, S. V., Salloum, M. M., Freeman, J., Khanna, R., Gannala, P., Goel, V., Jones-MacFarland, F. N., Killgore, W. D., Porreca, F., & Ibrahim, M. M. (2021). Evaluation of green light exposure on headache frequency and quality of life in migraine patients: A preliminary one-way cross-over clinical trial. Cephalalgia, 41(2), 135–147. https://doi.org/10.1177/0333102420956711

    Article  PubMed  Google Scholar 

  19. Northrop, J. H. (1925). The influence of the intensity of light on the rate of growth and duration of life of Drosophila. The Journal of General Physiology, 9(1), 81–86. https://doi.org/10.1085/jgp.9.1.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruins, B. G., Scharloo, W., & Thorig, G. E. W. (1991). The harmful effect of light on Drosophila is diet-dependent. Insect Biochemistry., 21, 535–539.

    Article  CAS  Google Scholar 

  21. Zhao, J., Warman, G. R., Stanewsky, R., & Cheeseman, J. F. (2019). Development of the molecular circadian clock and its light sensitivity in Drosophila melanogaster. Journal of Biological Rhythms, 34(3), 272–282. https://doi.org/10.1177/0748730419836818

    Article  CAS  PubMed  Google Scholar 

  22. Bhatt, P. K., & Neckameyer, W. S. (2013). Functional analysis of the larval feeding circuit in Drosophila. Journal of Visualized Experiments JoVE, 81, e51062. https://doi.org/10.3791/51062

    Article  Google Scholar 

  23. Farca Luna, A. J., von Essen, A. M., Widmer, Y. F., & Sprecher, S. G. (2013). Light preference assay to study innate and circadian regulated photobehavior in Drosophila larvae. Journal of Visualized Experiments: JoVE, 74, 50237. https://doi.org/10.3791/50237

    Article  Google Scholar 

  24. Yadav, P., & Sharma, V. K. (2013). Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 183(3), 333–343. https://doi.org/10.1007/s00360-012-0716-1

    Article  CAS  PubMed  Google Scholar 

  25. Krittika, S., Lenka, A., & Yadav, P. (2019). Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biology Open, 8(6), bio042952. https://doi.org/10.1242/bio.042952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allada, R., & Chung, B. Y. (2010). Circadian organization of behavior and physiology in Drosophila. Annual Review of Physiology, 72, 605–624. https://doi.org/10.1146/annurev-physiol-021909-135815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamanaka, N., Romero, N. M., Martin, F. A., Rewitz, K. F., Sun, M., O’Connor, M. B., & Léopold, P. (2013). Neuroendocrine control of Drosophila larval light preference. Science (New York, NY), 341(6150), 1113–1116. https://doi.org/10.1126/science.1241210

    Article  CAS  Google Scholar 

  28. Nässel, D. R., & Zandawala, M. (2020). Hormonal axes in Drosophila: Regulation of hormone release and multiplicity of actions. Cell and Tissue Research, 382(2), 233–266. https://doi.org/10.1007/s00441-020-03264-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humberg, T. H., & Sprecher, S. G. (2017). Age- and wavelength-dependency of Drosophila larval phototaxis and behavioral responses to natural lighting conditions. Frontiers in Behavioral Neuroscience, 11, 66. https://doi.org/10.3389/fnbeh.2017.0006.6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marley, R., Giachello, C. N., Scrutton, N. S., Baines, R. A., & Jones, A. R. (2014). Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Scientific Reports, 4, 5799. https://doi.org/10.1038/srep05799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Au, D. D., Foden, A. J., Park, S. J., Nguyen, T. H., Liu, J. C., Tran, M. D., Jaime, O. G., Yu, Z., & Holmes, T. C. (2022). Mosquito cryptochromes expressed in Drosophila confer species-specific behavioral light responses. Current Biology: CB, 32(17), 3731-3744.e4. https://doi.org/10.1016/j.cub.2022.07.021

    Article  CAS  PubMed  Google Scholar 

  32. Sewell, D., Burnet, B., & Connolly, K. (1974). Genetic analysis of larval feeding behaviour in Drosophila melanogaster. Genetical Research, 24(2), 163–173. https://doi.org/10.1017/s0016672300015196

    Article  CAS  PubMed  Google Scholar 

  33. De Souza, H. M. L., Da Cunha, A. B., & Dos Santos, E. P. (1970). Adaptive polymorphism of behavior evolved in laboratory populations of Drosophila willistoni. The American Naturalist., 104, 175–189.

    Article  Google Scholar 

  34. Paranjpe, D. A., Anitha, D., Sharma, V. K., & Joshi, A. (2004). Circadian clocks and life-history related traits: Is pupation height affected by circadian organization in Drosophila melanogaster? Journal of Genetics, 83(1), 73–77. https://doi.org/10.1007/BF02715831

    Article  CAS  PubMed  Google Scholar 

  35. Varma, V., Krishna, S., Srivastava, M., Sharma, V. K., & Sheeba, V. (2019). Accuracy of fruit-fly eclosion rhythms evolves by strengthening circadian gating rather than developmental fine-tuning. Biology Open, 8(8), bio042176. https://doi.org/10.1242/bio.042176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wyneken, J., & Lolavar, A. (2015). Loggerhead sea turtle environmental sex determination: implications of moisture and temperature for climate change based predictions for species survival. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 324(3), 295–314. https://doi.org/10.1002/jez.b.22620

    Article  PubMed  Google Scholar 

  37. Nash, D. J., & Come, T. V. (1967). Sex ratio in drosophila melanogaster as modified by temperature and genotype. Proceedings of the Pennsylvania Academy of Science, 40(2), 1–6.

    Google Scholar 

  38. Encily, R. M. (2005). Effect of light dark regimes on the deviant sex ratio in Drosophila rajasekari. DIS., 87, 46–49.

    Google Scholar 

  39. Shibuya, K., Onodera, S., & Hori, M. (2018). Toxic wavelength of blue light changes as insects grow. PLoS ONE, 13(6), e0199266. https://doi.org/10.1371/journal.pone.0199266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge SASTRA Deemed-to-be University for the infrastructural facilities.

Funding

P.Y.: Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, CRG/2019/003184. P.R.: Centre for Scientific and Industrial Research (CSIR) – Junior Research fellowship, 09/1095(15083)/2022-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

PR: conceptualization; data curation; formal analysis; investigation; methodology; validation; visualization; writing-original draft; writing—review and editing. PY: conceptualization; data curation; funding acquisition; investigation; methodology; project administration; supervision; validation; visualization; writing—original draft, writing—review and editing. AJ: data curation, formal analysis, investigation, methodology, validation. MT: data curation, methodology.

Corresponding author

Correspondence to Pankaj Yadav.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, P., Joshi, A., Tulasi, M. et al. Monochromatic visible lights modulate the timing of pre-adult developmental traits in Drosophila melanogaster. Photochem Photobiol Sci 22, 867–881 (2023). https://doi.org/10.1007/s43630-022-00358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00358-1

Keywords

Navigation