Skip to main content
Log in

More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague–Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance (\({E}_{B}\)) than conventional white LED. The results illustrated that \({E}_{B}\) proposed by IEC 62471 could not exactly evaluate the light damage on rats’ retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available upon request directed to the corresponding author.

References

  1. Hye Oh, J., Ji Yang, S., & Rag Do, Y. (2014). Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light Science and Applications, 3(2), e141–e141. https://doi.org/10.1038/lsa.2014.22

    Article  CAS  Google Scholar 

  2. Cho, J., Park, J. H., Kim, J. K., & Schubert, E. F. (2017). White light-emitting diodes: History, progress, and future. Laser and Photonics Reviews, 11(2), 1600147. https://doi.org/10.1002/lpor.201600147

    Article  CAS  Google Scholar 

  3. Behar-Cohen, F., Martinsons, C., Viénot, F., Zissis, G., Barlier-Salsi, A., Cesarini, J. P., Enouf, O., Garcia, M., Picaud, S., & Attia, D. (2011). Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Progress in Retinal and Eye Research, 30(4), 239–257. https://doi.org/10.1016/j.preteyeres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  4. IEC. (2006). IEC 62471: 2006 photobiological safety of lamps and lamp systems. https://webstore.iec.ch/publication/7076

  5. Ouyang, X., Yang, J., Hong, Z., Wu, Y., Xie, Y., & Wang, G. (2020). Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomedicine and Pharmacotherapy, 130, 110577. https://doi.org/10.1016/j.biopha.2020.110577

    Article  CAS  PubMed  Google Scholar 

  6. Tao, J.-X., Zhou, W.-C., & Zhu, X.-G. (2019). Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxidative Medicine and Cellular Longevity, 2019, 1–20. https://doi.org/10.1155/2019/6435364

    Article  CAS  Google Scholar 

  7. Kutsyr, O., Sánchez-Sáez, X., Martínez-Gil, N., de Juan, E., Lax, P., Maneu, V., & Cuenca, N. (2020). Gradual increase in environmental light intensity induces oxidative stress and inflammation and accelerates retinal neurodegeneration. Investigative Opthalmology and Visual Science, 61(10), 1. https://doi.org/10.1167/iovs.61.10.1

    Article  CAS  Google Scholar 

  8. de Gálvez, E. N., Aguilera, J., Solis, A., de Gálvez, M. V., de Andrés, J. R., Herrera-Ceballos, E., & Gago-Calderon, A. (2022). The potential role of UV and blue light from the sun, artificial lighting, and electronic devices in melanogenesis and oxidative stress. Journal of Photochemistry and Photobiology B: Biology, 228, 112405. https://doi.org/10.1016/j.jphotobiol.2022.112405

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida, A., Yoshino, F., Makita, T., Maehata, Y., Higashi, K., Miyamoto, C., Wada-Takahashi, S., Takahashi, S., Takahashi, O., & Lee, M. C. (2013). Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation. Journal of Photochemistry and Photobiology B: Biology, 129, 1–5. https://doi.org/10.1016/j.jphotobiol.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Shang, Y. M., Wang, G. S., Sliney, D. H., Yang, C. H., & Lee, L. L. (2017). Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. International Journal of Ophthalmology, 10(2), 191–202. https://doi.org/10.18240/ijo.2017.02.03

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ziółkowska, N., Chmielewska-Krzesińska, M., Vyniarska, A., & Sienkiewicz, W. (2022). Exposure to blue light reduces melanopsin expression in intrinsically photoreceptive retinal ganglion cells and damages the inner retina in rats. Investigative Opthalmology and Visual Science, 63(1), 26. https://doi.org/10.1167/iovs.63.1.26

    Article  CAS  Google Scholar 

  12. Nakamura, M., Yako, T., Kuse, Y., Inoue, Y., Nishinaka, A., Nakamura, S., Shimazawa, M., & Hara, H. (2018). Exposure to excessive blue LED light damages retinal pigment epithelium and photoreceptors of pigmented mice. Experimental Eye Research, 177, 1–11. https://doi.org/10.1016/j.exer.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  13. Jin, M., Li, X., Yan, F., Chen, W., Jiang, L., & Zhang, X. (2021). The effects of low-color-temperature dual-primary-color light-emitting diodes on three kinds of retinal cells. Journal of Photochemistry and Photobiology B, 214, 112099. https://doi.org/10.1016/j.jphotobiol.2020.112099

    Article  CAS  Google Scholar 

  14. Xie, C., Zhu, H., Chen, S., Wen, Y., Jin, L., Zhang, L., Tong, J., & Shen, Y. (2020). Chronic retinal injury induced by white LED light with different correlated color temperatures as determined by microarray analyses of genome-wide expression patterns in mice. Journal of Photochemistry and Photobiology B, 210, 111977. https://doi.org/10.1016/j.jphotobiol.2020.111977

    Article  CAS  Google Scholar 

  15. Shang, Y. M., Wang, G. S., Sliney, D., Yang, C. H., & Lee, L. L. (2014). White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environmental Health Perspectives, 122(3), 269–276. https://doi.org/10.1289/ehp.1307294

    Article  PubMed  Google Scholar 

  16. Tanito, M., Kaidzu, S., & Anderson, R. E. (2006). Protective effects of soft acrylic yellow filter against blue light-induced retinal damage in rats. Experimental Eye Research, 83(6), 1493–1504. https://doi.org/10.1016/j.exer.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X., Zhou, Q., Lin, H., Wu, J., Wu, Z., Qu, S., & Bi, Y. (2019). The protective effects of blue light-blocking films with different shielding rates: A rat model study. Translational Vision Science and Technology, 8(3), 19. https://doi.org/10.1167/tvst.8.3.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Narimatsu, T., Ozawa, Y., Miyake, S., Kubota, S., Yuki, K., Nagai, N., & Tsubota, K. (2014). Biological effects of blocking blue and other visible light on the mouse retina. Clinical and Experimental Ophthalmology, 42(6), 555–563. https://doi.org/10.1111/ceo.12253

    Article  PubMed  Google Scholar 

  19. Garcı, D., Vicente-tejedor, J., Marchena, M., Ramı, L., Sa, C., Villa, P. D., & Germain, F. (2018). Removal of the blue component of light significantly decreases retinal damage after high intensity exposure. PLoS ONE, 13(3), 1–18. https://doi.org/10.1371/journal.pone.0194218

    Article  CAS  Google Scholar 

  20. Huang, H.-P., Wei, M., & Ou, L.-C. (2018). White appearance of a tablet display under different ambient lighting conditions. Optics Express, 26(4), 5018–5030. https://doi.org/10.1364/oe.26.005018

    Article  CAS  PubMed  Google Scholar 

  21. Ohno, Y. (2014). Practical use and calculation of CCT and Duv. LEUKOS Journal of Illuminating Engineering Society of North America, 10(1), 47–55. https://doi.org/10.1080/15502724.2014.839020

    Article  Google Scholar 

  22. Chen, H., Zhu, R., Lee, Y.-H., & Wu, S.-T. (2016). Correlated color temperature tunable white LED with a dynamic color filter. Optics Express, 24(6), A731. https://doi.org/10.1364/OE.24.00A731

    Article  CAS  PubMed  Google Scholar 

  23. Leung, T. W., Li, R. W. H., & Kee, C. S. (2017). Blue-light filtering spectacle lenses: Optical and clinical performances. PLoS ONE, 12(1), 1–15. https://doi.org/10.1371/journal.pone.0169114

    Article  CAS  Google Scholar 

  24. Meng, Q., Lian, Y., Jiang, J., Wang, W., Hou, X., Pan, Y., Chu, H., Shang, L., Wei, X., & Hao, W. (2018). Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats. Photochemical and Photobiological Sciences, 17(4), 386–394. https://doi.org/10.1039/C7PP00271H

    Article  CAS  PubMed  Google Scholar 

  25. Nie, J., Chen, Z., Jiao, F., Chen, Y., Zhan, J., Chen, Y., Pan, Z., Kang, X., Wang, Y., Wang, Q., Dang, W., Dong, W., Zhou, S., Yu, X., Tong, Y., Zhang, G., & Shen, B. (2022). Utilization of far-red LED to minimize blue light hazard for dynamic semiconductor lighting. LEUKOS. https://doi.org/10.1080/15502724.2022.2043163

    Article  Google Scholar 

  26. Heinig, N., Schumann, U., Calzia, D., Panfoli, I., Ader, M., Schmidt, M. H. H., Funk, R. H. W., & Roehlecke, C. (2020). Photobiomodulation mediates neuroprotection against blue light induced retinal photoreceptor degeneration. International Journal of Molecular Sciences, 21(7), 2370. https://doi.org/10.3390/ijms21072370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. York, N., Geneva, I. I., Ave, I., Red, C., & Prize, N. (2016). Photobiomodulation for the treatment of retinal diseases: A review. International Journal of Ophthalmology, 9(1), 145–152. https://doi.org/10.18240/ijo.2016.01.24

    Article  Google Scholar 

  28. Rono, C., & Oliver, T. R. (2020). Near infrared light exposure is associated with increased mitochondrial membrane potential in retinal pigmented epithelial cells. Photochemical and Photobiological Sciences, 19(10), 1455–1459. https://doi.org/10.1039/D0PP00168F

    Article  CAS  PubMed  Google Scholar 

  29. Eells, J. T., Henry, M. M., Summerfelt, P., Wong-Riley, M. T. T., Buchmann, E. V., Kane, M., Whelan, N. T., & Whelan, H. T. (2003). Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3439–3444. https://doi.org/10.1073/pnas.0534746100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heiskanen, V., & Hamblin, M. R. (2018). Photobiomodulation: Lasers vs. light emitting diodes? Photochemical and Photobiological Sciences, 17(8), 1003–1017. https://doi.org/10.1039/C8PP00176F

    Article  CAS  PubMed  Google Scholar 

  31. Shang, Y. M., Lee, L. L., Hwang, J. M., Wang, G. S., & Cheng, C. P. (2017). Assessing retinal hazardous effects from phosphor converted light emitting diode (LED) lighting with different Correlated Color Temperature (CCT). Key Engineering Materials, 730, 112–118. https://doi.org/10.4028/www.scientific.net/KEM.730.112

    Article  Google Scholar 

  32. Figueiro, M. G., Bullough, J. D., Parsons, R. H., & Rea, M. S. (2004). Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans. NeuroReport, 15(2), 313–316. https://doi.org/10.1097/00001756-200402090-00020

    Article  CAS  PubMed  Google Scholar 

  33. Figueiro, M. G., Bierman, A., & Rea, M. S. (2008). Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system. Neuroscience Letters, 438(2), 242–245. https://doi.org/10.1016/j.neulet.2008.04.055

    Article  CAS  PubMed  Google Scholar 

  34. Rea, M. S., Figueiro, M. G., Bullough, J. D., & Bierman, A. (2005). A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2), 213–228. https://doi.org/10.1016/j.brainresrev.2005.07.002

    Article  PubMed  Google Scholar 

  35. Jaadane, I., Villalpando Rodriguez, G. E., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., Jonet, L., Behar-Cohen, F., Martinsons, C., & Torriglia, A. (2017). Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. Journal of Cellular and Molecular Medicine, 21(12), 3453–3466. https://doi.org/10.1111/jcmm.13255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia, H., Hu, Q., Li, L., Tang, X., Zou, J., Huang, L., & Li, X. (2019). Protective effects of autophagy against blue light-induced retinal degeneration in aged mice. Science China Life Sciences, 62(2), 244–256. https://doi.org/10.1007/s11427-018-9357-y

    Article  CAS  PubMed  Google Scholar 

  37. Huang, C., Zhang, P., Wang, W., Xu, Y., Wang, M., Chen, X., & Dong, X. (2014). Long-term blue light exposure induces RGC-5 cell death in vitro: Involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis, 19(6), 922–932. https://doi.org/10.1007/s10495-014-0983-2

    Article  CAS  PubMed  Google Scholar 

  38. Xue, L., Zeng, Y., Li, Q., Li, Y., Li, Z., Xu, H., & Yin, Z. (2017). Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget, 8(54), 93087–93102. https://doi.org/10.18632/oncotarget.21857

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aranaz, M., Costas-Rodríguez, M., Lobo, L., García, M., González-Iglesias, H., Pereiro, R., & Vanhaecke, F. (2021). Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-021-03467-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahamed Basha, A., Mathangi, D. C., Shyamala, R., & Ramesh Rao, K. (2014). Protective effect of light emitting diode phototherapy on fluorescent light induced retinal damage in Wistar strain albino rats. Annals of Anatomy, 196(5), 312–316. https://doi.org/10.1016/j.aanat.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Steven, L., Wendy, U., Raymond, A., Samuel, C., Temple, G., Cheryl, G., Sharon, G.-B., McCrackin, M. A., Robert, M., David, M., Jan, S., Tracy, T., & Roy, Y. (2020). AVMA Guidelines for the Euthanasia of Animals (2020.0.1). American Veterinary Medical Association. https://www.avma.org/resources-tools/avma-policies/avma-guidelines-euthanasia-animals

  42. CIE TN 002:2014. (2014). Relating photochemical and photobiological quantities to photometric quantities.

  43. Xiaoqin Gao, X. G., Jian Dang, J. D., Liang Wu, L. W., Bin Sheng, B. S., Jiayu Zhang, J. Z., & Zaichen Zhang, Z. Z. (2016). Multi-color-emitting quantum dot-based white LEDs. Chinese Optics Letters, 14(11), 112301–112304. https://doi.org/10.3788/COL201614.112301

    Article  Google Scholar 

  44. McCulloch, D. L., Marmor, M. F., Brigell, M. G., Hamilton, R., Holder, G. E., Tzekov, R., & Bach, M. (2015). ISCEV Standard for full-field clinical electroretinography (2015 update). Documenta Ophthalmologica, 130(1), 1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  45. Brown, E. E., DeWeerd, A. J., Ildefonso, C. J., Lewin, A. S., & Ash, J. D. (2019). Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biology, 24, 101201. https://doi.org/10.1016/j.redox.2019.101201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, T.-Z., Fan, B., Chen, X., Wang, W.-J., Jiao, Y.-Y., Su, G.-F., & Li, G.-Y. (2014). Suppressing autophagy protects photoreceptor cells from light-induced injury. Biochemical and Biophysical Research Communications, 450(2), 966–972. https://doi.org/10.1016/j.bbrc.2014.06.082

    Article  CAS  PubMed  Google Scholar 

  47. Jaadane, I., Villalpando Rodriguez, G., Boulenguez, P., Carré, S., Dassieni, I., Lebon, C., Chahory, S., Behar-Cohen, F., Martinsons, C., & Torriglia, A. (2020). Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology. Scientific Reports, 10(1), 6733. https://doi.org/10.1038/s41598-020-63442-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tisi, A., Parete, G., Flati, V., & Maccarone, R. (2020). Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-63449-y

    Article  CAS  Google Scholar 

  49. Tso, M. O. M., & Woodford, B. J. (1983). Effect of photic injury on the retinal tissues. Ophthalmology, 90(8), 952–963. https://doi.org/10.1016/S0161-6420(83)80023-2

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Y., Wu, Z., Cheng, Y., Lin, W., & Qu, C. (2019). Resveratrol protects against oxidative damage of retinal pigment epithelium cells by modulating SOD / MDA activity and activating Bcl-2 expression. European Review for Medical and Pharmacological Sciences, 23(1), 378–388. https://doi.org/10.26355/eurrev_201901_16786

    Article  CAS  PubMed  Google Scholar 

  51. Pachito, D. V., Eckeli, A. L., Desouky, A. S., Corbett, M. A., Partonen, T., Rajaratnam, S. M., & Riera, R. (2018). Workplace lighting for improving alertness and mood in daytime workers. Cochrane Database of Systematic Reviews, 2018(3), 1–82. https://doi.org/10.1002/14651858.CD012243.pub2

    Article  Google Scholar 

  52. Organisciak, D. T., & Vaughan, D. K. (2010). Retinal light damage: Mechanisms and protection. Progress in Retinal and Eye Research, 29(2), 113–134. https://doi.org/10.1016/j.preteyeres.2009.11.004

    Article  PubMed  Google Scholar 

  53. Charmorro, E., & Carralero, S. F. (2013). Photoprotective effects of blue light absorbing filter against led light exposure on human retinal pigment epithelial cells in vitro. Journal of Carcinogenesis and Mutagenesis. https://doi.org/10.4172/2157-2518.S6-008

    Article  Google Scholar 

  54. Pawlak, A. (2018). Evaluation of the hazard caused by blue light emitted by LED sources. VII Lighting Conference of the Visegrad Countries (Lumen V4). https://doi.org/10.1109/LUMENV.2018.8521150

    Article  Google Scholar 

  55. Albarracin, R., Eells, J., & Valter, K. (2011). Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Investigative Ophthalmology and Visual Science, 52(6), 3582–3592. https://doi.org/10.1167/iovs.10-6664

    Article  PubMed  Google Scholar 

  56. Albarracin, R., Natoli, R., Rutar, M., Valter, K., & Provis, J. (2013). 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina. BMC Neuroscience, 14(1), 125. https://doi.org/10.1186/1471-2202-14-125

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee, S., Kakitsuba, N., & Katsuura, T. (2018). Do green-blocking glasses enhance the nonvisual effects of white polychromatic light? Journal of Physiological Anthropology, 37(1), 4–9. https://doi.org/10.1186/s40101-018-0189-3

    Article  Google Scholar 

  58. Verma, A. K., Singh, S., Garg, G., & Rizvi, S. I. (2021). Melatonin exerts neuroprotection in a chronodisrupted rat model through reduction in oxidative stress and modulation of autophagy. Chronobiology International. https://doi.org/10.1080/07420528.2021.1966025

    Article  PubMed  Google Scholar 

  59. Fernández, A., Ordõñez, R., Reiter, R. J., González-Gallego, J., & Mauriz, J. L. (2015). Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. Journal of Pineal Research, 59(3), 292–307. https://doi.org/10.1111/jpi.12264

    Article  CAS  PubMed  Google Scholar 

  60. Depres-Brummer, P., Levi, F., Metzger, G., & Touitou, Y. (1995). Light-induced suppression of the rat circadian system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 268(5), R1111–R1116. https://doi.org/10.1152/ajpregu.1995.268.5.R1111

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program [grant numbers 2021YFB3600100, 2020YFC2008200]; National Natural Science Foundation of China [grant numbers 62174004, 61927806, 81670870]; Basic and Applied Basic Research Foundation of Guangdong Province [grant number 2020B1515120020]; Beijing-Tianjin-Hebei Special Project [grant number J200014]; and Science and Technology Innovation Project of Chinese Academy of Medical Sciences [grant number 2019-RC-HL-019].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhizhong Chen or Lvzhen Huang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Xu, N., Chen, Z. et al. More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency. Photochem Photobiol Sci 22, 809–824 (2023). https://doi.org/10.1007/s43630-022-00354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00354-5

Keywords

Navigation