Skip to main content
Log in

Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photosynthetic apparatus is a major reactive oxygen species (ROS) proliferator, especially in high-light environments. The role of ROS in photoinhibition and photoacclimation mechanisms has been extensively explored, primarily in model plant species. However, little work has been performed on the topic in non-Archaeplastida organisms, such as the model heterokont species Nannochloropsis oceanica. To investigate the photoacclimation and damaging impact of singlet oxygen and superoxide anions on the photosynthetic apparatus of N. oceanica, we subjected cells to two doses of methyl viologen and rose bengal. Significant findings: Rose bengal (a singlet-oxygen photosensitizer) induced changes to the photosynthetic apparatus and PSII photochemistry mirroring high-light-acclimated cells, suggesting that singlet-oxygen signaling plays a role in the high-light acclimation of PSII. We further suggest that this singlet-oxygen pathway is mediated outside the plastid, given that rose bengal caused no detectable damage to the photosynthetic apparatus. Methyl viologen (a superoxide-anion sensitizer) induced an enhanced non-photochemical quenching response, similar to what occurs in high-light-acclimated cells. We propose that superoxide anions produced inside the plastid help regulate the high-light acclimation of photoprotective pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salvatori, N., Alberti, G., Mulle, O., & Peressotti, A. (2022). Does fluctuating light affect crop yield? A focus on the dynamic photosynthesis of two soybean varieties. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.862275

    Article  Google Scholar 

  2. Perin, G., Gambaro, F., & Morosinotto, T. (2022). Knowledge of regulation of photosynthesis in outdoor microalgae cultures is essential for the optimization of biomass productivity. Frontiers in Plant Science, 13, 1–11.

    Google Scholar 

  3. Foyer, C. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134–142.

    CAS  Google Scholar 

  4. Bashir, F., Rehman, A. U., Szabó, M., & Vass, I. (2021). Singlet oxygen damages the function of Photosystem II in isolated thylakoids and in the green alga chlorella sorokiniana. Photosynthesis Research, 149, 93–105.

    CAS  Google Scholar 

  5. Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., & Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 43, 11321–11330.

    CAS  Google Scholar 

  6. Bhatt, M., Pandey, S. S., Tiwari, A. K., & Tiwari, B. S. (2021). Plastid-mediated singlet oxygen in regulated cell death. Plant Biology, 23, 686–694.

    CAS  Google Scholar 

  7. Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304–1320.

    CAS  Google Scholar 

  8. Nishiyama, Y., & Murata, N. (2014). Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology, 98, 8777–8796.

    CAS  Google Scholar 

  9. Foyer, C. H., & Noctor, G. (2016). Stress-triggered redox signalling: What’s in pROSpect? Plant, Cell and Environment, 39, 951–964.

    CAS  Google Scholar 

  10. Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64, 583–607.

    CAS  Google Scholar 

  11. Stiller, J. W., Schreiber, J., Yue, J., Guo, H., Ding, Q., & Huang, J. (2014). The evolution of photosynthesis in chromist algae through serial endosymbioses. Nature Communications, 5, 1–7.

    Google Scholar 

  12. Gould, S. B., Waller, R. F., & McFadden, G. I. (2008). Plastid evolution. Annual Review of Plant Biology, 59, 491–517.

    CAS  Google Scholar 

  13. Dorrell, R. G., Gile, G., McCallum, G., Méheust, R., Bapteste, E. P., Klinger, C. M., Brillet-Guéguen, L., Freeman, K. D., Richter, D. J., & Bowler, C. (2017). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife, 6, 1–45.

    Google Scholar 

  14. Kovács, L., Ayaydin, F., Kálai, T., Tandori, J., Kós, P. B., & Hideg, É. (2014). Assessing the applicability of singlet oxygen photosensitizers in leaf studies. Photochemistry and Photobiology, 90, 129–136.

    Google Scholar 

  15. Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T., & Miyake, C. (2016). Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171, 1626–1634.

    CAS  Google Scholar 

  16. Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T. A., & Miyao, M. (1996). Selective and specific cleavage of the D1 and D2 proteins of Photosystem II by exposure to singlet oxygen: Factors responsible for the susceptibility to cleavage of the proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1274, 73–79.

    Google Scholar 

  17. Fischer, B. B., Hideg, É., & Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants Redox Signal., 18, 2145–2162.

    CAS  Google Scholar 

  18. Ben Sheleg, A., Novoplansky, N., & Vonshak, A. (2019). Can Rose Bengal resilience be used as a marker for photosynthetic resilience of Nannochloropsis oceanica strains in excess light environments? (p. 41). Elsevier.

    Google Scholar 

  19. Ben-Sheleg, A., & Vonshak, A. (2022). Tolerance to exogenously added ROS examined for correlation with enhanced specific growth rates of Arthrospira platensis. Journal of Applied Phycology. https://doi.org/10.1007/s10811-022-02688-0

    Article  Google Scholar 

  20. Dall’Osto, L., Cazzaniga, S., Guardini, Z., Barera, S., Benedetti, M., Mannino, G., Maffei, M. E., & Bassi, R. (2019). Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnology for Biofuels, 12, 1–17.

    Google Scholar 

  21. Ben-sheleg, A., Khozin-godberg, I., Yaakov, B., & Vonshak, A. (2021). Characterization of Nannochloropsis oceanica rose Bengal mutants sheds light on acclimation mechanisms to high light when grown in low temperature a barrier to realizing nannochloropsis oceanica’s potential. PCP, 62, 1478–1493.

    CAS  Google Scholar 

  22. Seely, G. R., Duncan, M. J., & Vidaver, W. E. (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biology, 12, 184–188.

    CAS  Google Scholar 

  23. Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12, 88–118.

    CAS  Google Scholar 

  24. Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (1999). In M. Yunus, U. Pathre, & P. Mohanty (Eds.), Probing photosynthesis mechanisms, regulation and adaptation (pp. 445–483). Taylor & Francis.

    Google Scholar 

  25. Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee,. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56, 1–19.

    Google Scholar 

  26. Babbs, C. F., Pham, J. A., & Coolbaugh, R. C. (1989). Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiology, 90, 1267–1270.

    CAS  Google Scholar 

  27. Cui, F., Brosché, M., Shapiguzov, A., He, X. Q., Vainonen, J. P., Leppälä, J., Trotta, A., Kangasjärvi, S., Salojärvi, J., Kangasjärvi, J., & Overmyer, K. (2019). Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radical Biology & Medicine, 134, 555–566.

    CAS  Google Scholar 

  28. Nama, S., Madireddi, S. K., Yadav, R. M., & Subramanyam, R. (2019). Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. Photosynthesis Research, 139, 387–400.

    CAS  Google Scholar 

  29. Cao, S., Zhang, X., Xu, D., Fan, X., Mou, S., Wang, Y., Ye, N., & Wang, W. (2013). A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Letters, 587, 1310–1315.

    CAS  Google Scholar 

  30. Białasek, M., Górecka, M., Mittler, R., & Karpiński, S. (2017). Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant and Cell Physiology, 58, 207–215.

    Google Scholar 

  31. Dong, Y. L., Jiang, T., Xia, W., Dong, H. P., Lu, S. H., & Cui, L. (2015). Light harvesting proteins regulate non-photochemical fluorescence quenching in the marine diatom Thalassiosira pseudonana. Algal Research, 12, 300–307.

    Google Scholar 

  32. Miyake, C. (2010). Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant and Cell Physiology, 51, 1951–1963.

    CAS  Google Scholar 

  33. Zavřel, T., Szabó, M., Tamburic, B., Evenhuis, C., Kuzhiumparambil, U., Literáková, P., Larkum, A. W. D., Raven, J. A., Červený, J., & Ralph, P. J. (2018). Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. Journal of Photochemistry and Photobiology, B, 181, 31–43.

    Google Scholar 

  34. Sétif, P. (2015). Electron-transfer kinetics in cyanobacterial cells: Methyl viologen is a poor inhibitor of linear electron flow. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847, 212–222.

    Google Scholar 

  35. Chagas, R. M., Silveira, J. A. G., Ribeiro, R. V., Vitorello, V. A., & Carrer, H. (2008). Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology, 90, 181–188.

    CAS  Google Scholar 

  36. Martin, R. E., Thomas, D. J., Tucker, D. E., & Herbert, S. K. (1997). The effects of photooxidative stress on photosystem I measured in vivo in Chlamydomonas. Plant, Cell and Environment, 20, 1451–1461.

    CAS  Google Scholar 

  37. Collén, J., & Davison, I. R. (1999). Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant, Cell and Environment, 22, 1143–1151.

    Google Scholar 

  38. Gutiérrez, J., González-Pérez, S., García-García, F., Daly, C. T., Lorenzo, Ó., Revuelta, J. L., McCabe, P. F., & Arellano, J. B. (2014). Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. Journal of Experimental Botany, 65, 3081–3095.

    Google Scholar 

  39. Guo, L., Liang, S., Zhang, Z., Liu, H., Wang, S., Pan, K., Xu, J., Ren, X., Pei, S., & Yang, G. (2019). Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Communications Biology, 2, 1–12.

    CAS  Google Scholar 

  40. Koh, E., Carmieli, R., Mor, A., & Fluhr, R. (2016). Singlet oxygen-induced membrane disruption and serpin-protease balance in vacuolar-driven cell death. Plant Physiology, 171, 1616–1625.

    Google Scholar 

  41. Dogra, V., & Kim, C. (2020). Singlet oxygen metabolism: From genesis to signaling. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01640

    Article  Google Scholar 

  42. Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylidès, C., & Havaux, M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences, 109, 5535–5540.

    CAS  Google Scholar 

  43. Wang, L., Leister, D., Guan, L., Zheng, Y., Schneider, K., Lehmann, M., Apel, K., & Kleine, T. (2020). The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proceedings of the National Academy of Sciences, 117, 6918–6927.

    CAS  Google Scholar 

  44. Wang, L., Kim, C., Xu, X., Piskurewicz, U., Dogra, V., Singh, S., Mahler, H., & Apel, K. (2016). Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. PNAS, 113, E3792–E3800.

    CAS  Google Scholar 

  45. Fischer, B. B., Krieger-Liszkay, A., Hideg, É., Šnyrychová, I., Wiesendanger, M., & Eggen, R. I. L. (2007). Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii. FEBS Letters, 581, 5555–5560.

    CAS  Google Scholar 

  46. Fischer, B. B., Ledford, H. K., Wakao, S., Huang, S. Y. G., Casero, D., Pellegrini, M., Merchant, S. S., Koller, A., Eggen, R. I. L., & Niyogi, K. K. (2012). Singlet oxygen resistant 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii. PNAS, 109, E1302–E1311.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted without specific grants from any public or private agency. The authors would like to thank Samara Bel for her editing of this work. The authors would like to thank the reviewers of this work for their meticulous work and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Ben-Sheleg.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 263 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Sheleg, A., Vonshak, A. Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica. Photochem Photobiol Sci 21, 2205–2215 (2022). https://doi.org/10.1007/s43630-022-00289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00289-x

Keywords

Navigation