Skip to main content
Log in

Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two red-emitting heteroleptic iridium(III) complexes (Ir-p and Ir-q) were synthesized and their photophysical and biological properties were analyzed. After their structures have been confirmed by several techniques, such as 1H NMR, 13C NMR, FT–IR, UV–Vis, and MALDI TOF analyses, their luminescence behavior was investigated in ethanol and PBS (physiological medium, pH ~ 7.4) solutions. Emission spectra of both complexes are dominated by 3MLCT states at room temperature in ethanolic solution, but at 77 K the Ir-q exhibits the 3LC as the dominant emission state. The Ir-q complex shows one of the highest emission quantum yields, 11.5%, for a red emitter based on iridium(III) complexes in aerated PBS solution, with color coordinates (x;y) of (0.712;0.286). Moreover, both complexes display high potential to be used as a biological marker with excitation wavelengths above 400 nm, high water solubility (Ir-p 1838 μmol L−1, Ir-q 7601 μmol L−1), and distinct emission wavelengths from the biological autofluorescence. Their cytotoxicity was analyzed in CHO-k1 cells by MTT assays, and the IC50 was estimated as being higher than 131 μmol L−1 for Ir-p, and higher than 116 μmol L−1 for Ir-q. Concentrations above 70% of viability were used to perform cell imaging by confocal and fluorescence microscopies and the results suggest that the complexes were internalized by the cell membrane and they are staining the cytoplasm region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilbuer, A., Vlecken, D. H., Schmitz, D. J., Kräling, K., Harms, K., Bagowski, C. P., & Meggers, E. (2010). Iridium complex with antiangiogenic properties. Angewandte Chemie International Edition, 49(22), 3839–3842. https://doi.org/10.1002/anie.201000682

    Article  CAS  PubMed  Google Scholar 

  2. Li, C., Wang, H., Shen, J., & Tang, B. (2015). Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Analytical chemistry, 87(8), 4283–4291. https://doi.org/10.1021/ac5047032

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X., Maegawa, Y., Goto, Y., Hara, K., & Inagaki, S. (2016). Heterogeneous catalysis for water oxidation by an iridium complex immobilized on bipyridine-periodic mesoporous organosilica. Angewandte Chemie International Edition, 55(28), 7943–7947. https://doi.org/10.1002/anie.201601453

    Article  CAS  PubMed  Google Scholar 

  4. Li, T. Y., Wu, J., Wu, Z. G., Zheng, Y. X., Zuo, J. L., & Pan, Y. (2018). Rational design of phosphorescent iridium (III) complexes for emission color tunability and their applications in OLEDs. Coordination Chemistry Reviews, 374, 55–92. https://doi.org/10.1016/j.ccr.2018.06.014

    Article  CAS  Google Scholar 

  5. Canisares, F. S., Bispo-Jr, A. G., Pires, A. M., & Lima, S. A. (2020). Syntheses and characterization of Schiff base ligands and their Ir (III) complexes as coating for phosphor-converted LEDs. Optik, 219, 164995. https://doi.org/10.1016/j.ijleo.2020.164995

    Article  CAS  Google Scholar 

  6. Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R., & Thompson, M. E. (2001). Synthesis and characterization of phosphorescent cyclometalated iridium complexes. Inorganic Chemistry, 40(7), 1704–1711. https://doi.org/10.1021/ic0008969

    Article  CAS  PubMed  Google Scholar 

  7. Zanoni, K. P., Kariyazaki, B. K., Ito, A., Brennaman, M. K., Meyer, T. J., & Murakami Iha, N. Y. (2014). Blue-green iridium (III) emitter and comprehensive photophysical elucidation of heteroleptic cyclometalated iridium (III) complexes. Inorganic chemistry, 53(8), 4089–4099. https://doi.org/10.1021/ic500070s

    Article  CAS  PubMed  Google Scholar 

  8. Tsuzuki, T., Shirasawa, N., Suzuki, T., & Tokito, S. (2003). Color tunable organic light-emitting diodes using pentafluorophenyl-substituted iridium complexes. Advanced Materials, 15(17), 1455–1458. https://doi.org/10.1002/adma.200305034

    Article  CAS  Google Scholar 

  9. Ma, D. L., Wu, C., Tang, W., Gupta, A. R., Lee, F. W., Li, G., & Leung, C. H. (2018). Recent advances in iridium (III) complex-assisted nanomaterials for biological applications. Journal of Materials Chemistry B, 6(4), 537–544. https://doi.org/10.1039/C7TB02859H

    Article  CAS  PubMed  Google Scholar 

  10. Ma, D. L., Ng, H. P., Wong, S. Y., Vellaisamy, K., Wu, K. J., & Leung, C. H. (2018). Iridium (III) complexes as reaction based chemosensors for medical diagnostics. Dalton Transactions, 47(43), 15278–15282. https://doi.org/10.1039/C8DT03492C

    Article  CAS  PubMed  Google Scholar 

  11. Yi, Q. Y., Wan, D., Tang, B., Wang, Y. J., Zhang, W. Y., Du, F., He, M., & Liu, Y. J. (2018). Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium (III) polypyridyl complex. European Journal of Medicinal Chemistry, 145, 338–349. https://doi.org/10.1016/j.ejmech.2017.11.091

    Article  CAS  PubMed  Google Scholar 

  12. Kapuscinski, J. (1995). DAPI: A DNA-specific fluorescent probe. Biotechnic and Histochemistry, 70(5), 220–233. https://doi.org/10.3109/10520299509108199

    Article  CAS  PubMed  Google Scholar 

  13. Scaduto, R. C., Jr., & Grotyohann, L. W. (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical Journal, 76(1), 469–477. https://doi.org/10.1016/S0006-3495(99)77214-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pendergrass, W., Wolf, N., & Poot, M. (2004). Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry Part A, 61(2), 162–169. https://doi.org/10.1002/cyto.a.20033

    Article  CAS  Google Scholar 

  15. Zhao, Q., Yu, M., Shi, L., Liu, S., Li, C., Shi, M., Zhou, Z., Huang, C., & Li, F. (2010). Cationic iridium (III) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics, 29(5), 1085–1091. https://doi.org/10.1021/om900691r

    Article  CAS  Google Scholar 

  16. Murphy, L., Congreve, A., Pålsson, L. O., & Williams, J. G. (2010). The time domain in co-stained cell imaging: Time-resolved emission imaging microscopy using a protonatable luminescent iridium complex. Chemical Communications, 46(46), 8743–8745. https://doi.org/10.1039/c0cc03705b

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Y., Jia, J., Li, W., Fei, H., & Zhou, M. (2013). Luminescent biscarbene iridium (III) complexes as living cell imaging reagents. Chemical Communications, 49(31), 3230–3232. https://doi.org/10.1039/C3CC40845K

    Article  CAS  PubMed  Google Scholar 

  18. Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, T., Zhu, L., Zhong, C., Xie, G., Gong, S., Fang, J., Ma, D., & Yang, C. (2017). Naphthothiadiazole-based near-infrared emitter with a photoluminescence quantum yield of 60% in neat film and external quantum efficiencies of up to 3.9% in nondoped OLEDs. Advanced Functional Materials, 27(12), 1606384. https://doi.org/10.1002/adfm.201606384

    Article  CAS  Google Scholar 

  20. Dolan, C., Moriarty, R. D., Lestini, E., Devocelle, M., Forster, R. J., & Keyes, T. E. (2013). Cell uptake and cytotoxicity of a novel cyclometalated iridium (III) complex and its octaarginine peptide conjugate. Journal of Inorganic Biochemistry, 119, 65–74. https://doi.org/10.1016/j.jinorgbio.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Lee, L. C. C., Lau, J. C. W., Liu, H. W., & Lo, K. K. W. (2016). Conferring phosphorogenic properties on iridium (III)-based bioorthogonal probes through modification with a nitrone unit. Angewandte Chemie, 128(3), 1058–1061. https://doi.org/10.1002/ange.201509396

    Article  Google Scholar 

  22. Wang, J., Hou, X., Jin, C., & Chao, H. (2016). A cyclometalated iridium (III) complex serves as a phosphorescent probe for specific mitochondrial imaging in living cells. Chinese Journal of Chemistry, 34(6), 583–588. https://doi.org/10.1002/cjoc.201500769

    Article  CAS  Google Scholar 

  23. Lau, J. S. Y., Lee, P. K., Tsang, K. H. K., Ng, C. H. C., Lam, Y. W., Cheng, S. H., & Lo, K. K. W. (2009). Luminescent cyclometalated iridium (III) polypyridine indole complexes synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake. Inorganic Chemistry, 48(2), 708–718. https://doi.org/10.1021/ic801818x

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y., Liu, B., Xu, C. X., He, L., Wan, Y. C., Ji, L. N., & Mao, Z. W. (2020). Mitochondria-targeted phosphorescent cyclometalated iridium (III) complexes: Synthesis, characterization, and anticancer properties. JBIC Journal of Biological Inorganic Chemistry, 25(4), 597–607. https://doi.org/10.1007/s00775-020-01783-2

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Y., Guo, L., Ge, X., Zhu, T., Chen, W., Zhou, H., Zhao, L., & Liu, Z. (2019). The fluorine effect in zwitterionic half-sandwich iridium (III) anticancer complexes. Inorganic Chemistry, 59(1), 748–758. https://doi.org/10.1021/acs.inorgchem.9b03006

    Article  CAS  PubMed  Google Scholar 

  26. Novohradsky, V., Vigueras, G., Pracharova, J., Cutillas, N., Janiak, C., Kostrhunova, H., Brabec, V., Ruiz, J., & Kasparkova, J. (2019). Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium (III) complexes. Inorganic Chemistry Frontiers, 6(9), 2500–2513. https://doi.org/10.1039/C9QI00811J

    Article  CAS  Google Scholar 

  27. Qin, L. Q., Zou, B. Q., Qin, Q. P., Wang, Z. F., Yang, L., Tan, M. X., Liang, C.-J., & Liang, H. (2020). Highly cytotoxic, cyclometalated iridium (III)-5-fluoro-8-quinolinol complexes as cancer cell mitochondriotropic agents. New Journal of Chemistry, 44(19), 7832–7837. https://doi.org/10.1039/D0NJ00465K

    Article  CAS  Google Scholar 

  28. Yang, Y., Guo, L., Ge, X., Chen, W., Zhou, H., Zhu, T., Li, X., Tuo, S., & Liu, Z. (2020). Fluorescent zwitterionic Iridium (III) complexes containing sulfonate groups: Synthesis, biological activity and tracking in live cells. Dyes and Pigments, 176, 108220. https://doi.org/10.1016/j.dyepig.2020.108220

    Article  CAS  Google Scholar 

  29. Mayo, E. I., Kilså, K., Tirrell, T., Djurovich, P. I., Tamayo, A., Thompson, M. E., Lewis, N. S., & Gray, H. B. (2006). Cyclometalated iridium (III)-sensitized titanium dioxide solar cells. Photochemical and Photobiological Sciences, 5(10), 871–873. https://doi.org/10.1039/B608430C

    Article  CAS  PubMed  Google Scholar 

  30. Nonoyama, M. (1974). Benzo [h] quinolin-10-yl-N Iridium (III) complexes. Bulletin of the Chemical Society of Japan, 47(3), 767–768. https://doi.org/10.1246/bcsj.47.767

    Article  CAS  Google Scholar 

  31. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  32. Canisares, F. S., Mutti, A. M., Cavalcante, D. G., Job, A. E., Pires, A. M., & Lima, S. A. (2022). Luminescence and cytotoxic study of red emissive europium (III) complex as a cell dye. Journal of Photochemistry and Photobiology A Chemistry, 422, 113552. https://doi.org/10.1016/j.jphotochem.2021.113552

    Article  CAS  Google Scholar 

  33. Cavalcante, D. G., Da Silva, N. D., Marcarini, J. C., Mantovani, M. S., Marin-Morales, M. A., & Martinez, C. B. (2014). Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line. Toxicology in Vitro, 28(6), 1117–1125. https://doi.org/10.1016/j.tiv.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Pannipara, M., Asiri, A. M., Alamry, K. A., Arshad, M. N., & El-Daly, S. A. (2014). Spectroscopic investigation, effect of solvent polarity and fluorescence quenching of a new D–π–A type chalcone derivative. Journal of Fluorescence, 24(6), 1629–1638. https://doi.org/10.1007/s10895-014-1449-1

    Article  CAS  PubMed  Google Scholar 

  35. Brouwer, A. M. (2011). Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure and Applied Chemistry, 83(12), 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  36. Jiang, W., Gao, Y., Sun, Y., Ding, F., Xu, Y., Bian, Z., Li, F., Bian, J., & Huang, C. (2010). Zwitterionic iridium complexes: Synthesis, luminescent properties, and their application in cell imaging. Inorganic Chemistry, 49(7), 3252–3260. https://doi.org/10.1021/ic9021239

    Article  CAS  PubMed  Google Scholar 

  37. Tammer, M., & Sokrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. Wiley. https://doi.org/10.1007/s00396-004-1164-6

    Book  Google Scholar 

  38. Emmeluth, C., & Suhm, M. A. (2003). A chemical approach towards the spectroscopy of carboxylic acid dimer isomerism. Physical Chemistry Chemical Physics, 5(15), 3094–3099. https://doi.org/10.1039/B303816E

    Article  CAS  Google Scholar 

  39. Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345(4), 469–473. https://doi.org/10.1016/j.carres.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  40. Deiters, E., Song, B., Chauvin, A. S., Vandevyver, C. D., Gumy, F., & Bünzli, J. C. G. (2009). Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range. Chemistry, 15(4), 885–900. https://doi.org/10.1002/chem.200801868

    Article  CAS  PubMed  Google Scholar 

  41. Ma, Y., Liu, S., Yang, H., Wu, Y., Yang, C., Liu, X., Zhao, Q., Wu, H., Liang, J., Li, F., & Huang, W. (2011). Water-soluble phosphorescent iridium (III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. Journal of Materials Chemistry, 21(47), 18974–18982. https://doi.org/10.1039/C1JM13513A

    Article  CAS  Google Scholar 

  42. Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., & Hoshino, M. (2003). Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. Journal of the American Chemical Society, 125(42), 12971–12979. https://doi.org/10.1021/ja034732d

    Article  CAS  PubMed  Google Scholar 

  43. Ning, X., Zhao, C., Jiang, B., Gong, S., Ma, D., & Yang, C. (2019). Green and yellow pyridazine-based phosphorescent iridium (III) complexes for high-efficiency and low-cost organic light-emitting diodes. Dyes and Pigments, 164, 206–212. https://doi.org/10.1016/j.dyepig.2019.01.031

    Article  CAS  Google Scholar 

  44. Watts, R. J., & Missimer, D. (1978). Environmentally hindered radiationless transitions between states of different orbital parentage in iridium (III) complexes. Application of rigid-matrix induced perturbations of the pseudo-Jahn-Teller potential to the rigidochromic effect in d6 metal complexes. Journal of the American Chemical Society, 100(17), 5350–5357. https://doi.org/10.1021/ja00485a016

    Article  CAS  Google Scholar 

  45. Li, G. N., Zou, Y., Yang, Y. D., Liang, J., Cui, F., Zheng, T., Xie, H., & Niu, Z. G. (2014). Deep-red phosphorescent iridium (III) complexes containing 1-(benzo [b] thiophen-2-yl) isoquinoline ligand: Synthesis, photophysical and electrochemical properties and DFT calculations. Journal of Fluorescence, 24(5), 1545–1552. https://doi.org/10.1007/s10895-014-1443-7

    Article  CAS  PubMed  Google Scholar 

  46. Serroni, S., Juris, A., Campagna, S., Venturi, M., Denti, G., & Balzani, V. (1994). Tetranuclear bimetallic complexes of ruthenium, osmium, rhodium, and iridium. Synthesis, absorption spectra, luminescence, and electrochemical properties. Journal of the American Chemical Society, 116(20), 9086–9091. https://doi.org/10.1021/ja00099a026

    Article  CAS  Google Scholar 

  47. Calogero, G., Giuffrida, G., Serroni, S., Ricevuto, V., & Campagna, S. (1995). Absorption spectra, luminescence properties, and electrochemical behavior of cyclometalated iridium (III) and rhodium (III) complexes with a Bis (pyridyl) triazole ligand. Inorganic Chemistry, 34(3), 541–545. https://doi.org/10.1021/ic00107a004

    Article  CAS  Google Scholar 

  48. Zhao, Q., Liu, S., Shi, M., Wang, C., Yu, M., Li, L., Li, F., Yi, T., & Huang, C. (2006). Series of new cationic iridium (III) complexes with tunable emission wavelength and excited state properties: Structures, theoretical calculations, and photophysical and electrochemical properties. Inorganic Chemistry, 45(16), 6152–6160. https://doi.org/10.1021/ic052034j

    Article  CAS  PubMed  Google Scholar 

  49. Wang, C. (2017). electronic structure of π-conjugated materials and their effect on organic photovoltaics (Vol. 1893). Linköping University Electronic Press. https://doi.org/10.3384/diss.diva-143025

    Book  Google Scholar 

  50. Duvenhage, M. M., Ntwaeaborwa, M., Visser, H. G., Swarts, P. J., Swarts, J. C., & Swart, H. C. (2015). Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs. Optical Materials, 42, 193–198. https://doi.org/10.1016/j.optmat.2015.01.008

    Article  CAS  Google Scholar 

  51. Aziz, S. B., Abdullah, O. G., & Rasheed, M. A. (2017). A novel polymer composite with a small optical band gap: New approaches for photonics and optoelectronics. Journal of Applied Polymer Science. https://doi.org/10.1002/app.44847

    Article  Google Scholar 

  52. Lo, K.-W., Lee, P.-K., & Lau, J.-Y. (2008). Synthesis, characterization, and properties of luminescent organoiridium (III) polypyridine complexes appended with an alkyl chain and their interactions with lipid bilayers, surfactants, and living cells. Organometallics, 27(13), 2998–3006. https://doi.org/10.1021/om800212t

    Article  CAS  Google Scholar 

  53. Qiu, K., Liu, Y., Huang, H., Liu, C., Hongyi Zhu, Yu., Chen, L. J., & Chao, H. (2016). Biscylometalated iridium (iii) complexes target mitochondria or lysosomes by regulating the lipophilicity of the main ligands. Dalton Transactions, 45, 16144–16147. https://doi.org/10.1039/C6DT03328H

    Article  CAS  PubMed  Google Scholar 

  54. He, L., Cao, J.-J., Zhang, D.-Y., Hao, L., Zhang, M.-F., Tan, C.-P., Ji, L.-N., & Mao, Z.-W. (2018). Lipophilic phosphorescent iridium (III) complexes as one-and two-photon selective bioprobes for lipid droplets imaging in living cells. Sensors and Actuators B Chemical, 262, 313–325. https://doi.org/10.1016/j.snb.2018.02.022

    Article  CAS  Google Scholar 

  55. International Organization for Standardization. (2009). ISO 10993-5: 2009-Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity.

  56. Monici, M. (2005). Cell and tissue autofluorescence research and diagnostic applications. Biotechnology Annual Review, 11, 227–256. https://doi.org/10.1016/S1387-2656(05)11007-2

    Article  CAS  PubMed  Google Scholar 

  57. Thorp-Greenwood, F. L., Balasingham, R. G., & Coogan, M. P. (2012). Organometallic complexes of transition metals in luminescent cell imaging applications. Journal of Organometallic Chemistry, 714, 12–21. https://doi.org/10.1016/j.jorganchem.2012.01.020

    Article  CAS  Google Scholar 

  58. Mutti, A. M. G., Santos, J. A. O., Cavalcante, D. G. S. M., Gomes, A. S., Job, A. E., Teixeira, G. R., Pires, A. M., & Lima, S. A. M. (2019). Design of a red-emitter hybrid material for bioimaging: Europium complexes grafted on silica particles. Materials Today Chemistry, 14, 100204. https://doi.org/10.1016/j.mtchem.2019.100204

    Article  CAS  Google Scholar 

  59. Fan, Y., Zhao, J., Yan, Q., Chen, P. R., & Zhao, D. (2014). Water-soluble triscyclometalated organoiridium complex: Phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging. ACS Applied Materials and Interfaces, 6(5), 3122–3131. https://doi.org/10.1021/am500549y

    Article  CAS  PubMed  Google Scholar 

  60. Qiu, K., Huang, H., Liu, B., Liu, Y., Huang, Z., Chen, Y., Ji, L., & Chao, H. (2016). Long-term lysosomes tracking with a water-soluble two-photon phosphorescent iridium (III) complex. ACS Applied Materials and Interfaces, 8(20), 12702–12710. https://doi.org/10.1021/acsami.6b03422

    Article  CAS  PubMed  Google Scholar 

  61. Nakagawa, A., Hisamatsu, Y., Moromizato, S., Kohno, M., & Aoki, S. (2014). Synthesis and photochemical properties of pH responsive tris-cyclometalated iridium (III) complexes that contain a pyridine ring on the 2-phenylpyridine ligand. Inorganic Chemistry, 53(1), 409–422. https://doi.org/10.1021/ic402387b

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y., Zhang, P., Fang, X., Wu, G., Chen, S., Zhang, Z., Chao, H., Tan, W., & Xu, L. (2017). Near-infrared emitting iridium (III) complexes for mitochondrial imaging in living cells. Dalton Transactions, 46(14), 4777–4785. https://doi.org/10.1039/C7DT00255F

    Article  CAS  PubMed  Google Scholar 

  63. Nam, J. S., Kang, M. G., Kang, J., Park, S. Y., Lee, S. J. C., Kim, H. T., Seo, J. K., Kwon, O. H., Lim, M. H., Rhee, H. W., & Kwon, T. H. (2016). Endoplasmic reticulum-localized iridium (III) complexes as efficient photodynamic therapy agents via protein modifications. Journal of the American Chemical Society, 138(34), 10968–10977. https://doi.org/10.1021/jacs.6b05302

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, K. Y., Liu, H. W., Fong, T. T. H., Chen, X. G., & Lo, K. K. W. (2010). Luminescent dendritic cyclometalated iridium (III) polypyridine complexes: Synthesis, emission behavior, and biological properties. Inorganic Chemistry, 49(12), 5432–5443. https://doi.org/10.1021/ic902443e

    Article  CAS  PubMed  Google Scholar 

  65. Shaikh, S., Wang, Y., Rehman, F., Jiang, H., & Wang, X. (2020). Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coordination Chemistry Reviews, 416, 213344. https://doi.org/10.1016/j.ccr.2020.213344

    Article  CAS  Google Scholar 

  66. Steunenberg, P., Ruggi, A., van den Berg, N. S., Buckle, T., Kuil, J., van Leeuwen, F. W., & Velders, A. H. (2012). Phosphorescence imaging of living cells with amino acid-functionalized tris (2-phenylpyridine) iridium (III) complexes. Inorganic Chemistry, 51(4), 2105–2114. https://doi.org/10.1021/ic201860s

    Article  CAS  PubMed  Google Scholar 

  67. Caporale, C., & Massi, M. (2018). Cyclometalated iridium (III) complexes for life science. Coordination Chemistry Reviews, 363, 71–91. https://doi.org/10.1016/j.ccr.2018.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Brazilian agencies FAPESP (Grant No.2019/26103-7), CNPq (Grant No.304003/2018-1) and CAPES for the financial research support. Felipe S. M. Canisares is particularly grateful to the São Paulo research Foundation (FAPESP Grant No.2015/03400-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Grant No.88887.341772/2019-00) for the awarded scholarships. Laboratório de Difração de Raios X (FCT/UNESP), Núcleo de Inovação Tecnológica em Borracha Natural (FCT/UNESP), and Laboratório de Catálise Organometálica e Materiais (FCT/UNESP) for the cyclic voltammetry and FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. M. Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canisares, F.S.M., Mutti, A.M.G., Santana, E.F. et al. Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study. Photochem Photobiol Sci 21, 1077–1090 (2022). https://doi.org/10.1007/s43630-022-00200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00200-8

Keywords

Navigation