Skip to main content
Log in

Organometallic catalysis under visible light activation: benefits and preliminary rationales

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Organometallic catalysis under visible light activation is an emerging field. Activation by photosensitization or by direct light absorption of organometallic complexes can facilitate or trigger elementary steps in a catalytic cycle such as pre-catalyst reduction, oxidative addition, transmetalation and reductive elimination, as well as the ability of generating radical intermediates, widening the structural diversity offered by classical couplings. This perspective aims to highlight key examples of these light-induced or enhanced processes, with an emphasis on the underlying mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25

Similar content being viewed by others

References

  1. Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1(7), 0052. https://doi.org/10.1038/s41570-017-0052

    Article  CAS  Google Scholar 

  2. Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chemical Reviews, 113(7), 5322–5363. https://doi.org/10.1021/cr300503r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell, J. D., & Murphy, J. A. (2021). Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews, 50(17), 9540–9685. https://doi.org/10.1039/D1CS00311A

    Article  CAS  PubMed  Google Scholar 

  4. Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual catalysis strategies in photochemical synthesis. Chemical Reviews, 116(17), 10035–10074. https://doi.org/10.1021/acs.chemrev.6b00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: principles, applications, directions. Chemical Society Reviews, 47(19), 7190–7202. https://doi.org/10.1039/C8CS00054A

    Article  CAS  PubMed  Google Scholar 

  6. Shing Cheung, K. P., Sarkar, S., & Gevorgyan, V. (2021). Visible light-induced transition metal catalysis. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00403

    Article  Google Scholar 

  7. Baslé, O. (2021). (2021) Visible-light-induced 3d transition metal-catalysis: a focus on C–H bond functionalization. Current Opinion in Green and Sustainable Chemistry, 32, 100539. https://doi.org/10.1016/j.cogsc.2021.100539

    Article  Google Scholar 

  8. de Meijere, A., & Diederich, F. (2004). Metal‐catalyzed cross‐coupling Reactions. A. de Meijere, & F. Diederich (Eds.), Vol. 1, Wiley. https://doi.org/10.1002/9783527619535

  9. de Meijere, A., Br, S., & Oestreich, M. (2014). Metal-catalyzed cross-coupling reactions and more. A. de Meijere, S. Bräse, & M. Oestreich (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527655588

  10. Osawa, M., Nagai, H., & Akita, M. (2006). Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent. Journal of the Chemical Society. Dalton Transactions, 8, 827–829. https://doi.org/10.1039/b618007h

    Article  CAS  Google Scholar 

  11. Fredricks, M. A., Drees, M., & Köhler, K. (2010). Acceleration of the rate of the Heck reaction through UV- and visible-light-induced palladium(II) reduction. ChemCatChem, 2(11), 1467–1476. https://doi.org/10.1002/cctc.201000137

    Article  CAS  Google Scholar 

  12. Mori, K., Kawashima, M., & Yamashita, H. (2014). Visible-light-enhanced Suzuki-Miyaura coupling reaction by cooperative photocatalysis with an Ru–Pd bimetallic complex. Chemical Communications, 50(93), 14501–14503. https://doi.org/10.1039/c4cc03682d

    Article  CAS  PubMed  Google Scholar 

  13. Abdiaj, I., Huck, L., Mateo, J. M., de la Hoz, A., Gomez, M. V., Díaz-Ortiz, A., & Alcázar, J. (2018). Photoinduced palladium-catalyzed negishi cross-couplings enabled by the visible-light absorption of palladium-zinc complexes. Angewandte Chemie International Edition, 57(40), 13231–13236. https://doi.org/10.1002/anie.201808654

    Article  CAS  PubMed  Google Scholar 

  14. Abdiaj, I., Fontana, A., Gomez, M. V., de la Hoz, A., & Alcázar, J. (2018). Visible-light-induced nickel-catalyzed negishi cross-couplings by exogenous-photosensitizer-free photocatalysis. Angewandte Chemie International Edition, 57(28), 8473–8477. https://doi.org/10.1002/anie.201802656

    Article  CAS  PubMed  Google Scholar 

  15. Wei, X.-J., Abdiaj, I., Sambiagio, C., Li, C., Zysman-Colman, E., Alcázar, J., & Noël, T. (2019). Visible-light-promoted iron-catalyzed C(sp2)–C(sp3) kumada cross-coupling in flow. Angewandte Chemie International Edition, 58(37), 13030–13034. https://doi.org/10.1002/anie.201906462

    Article  CAS  PubMed  Google Scholar 

  16. Sahoo, B., Hopkinson, M. N., & Glorius, F. (2013). Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. Journal of the American Chemical Society, 135(15), 5505–5508. https://doi.org/10.1021/ja400311h

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, Z., Wang, Z., Wang, Y., & Zhang, L. (2016). Au-catalysed oxidative cyclisation. Chemical Society Reviews, 45(16), 4448–4458. https://doi.org/10.1039/C5CS00887E

    Article  CAS  PubMed  Google Scholar 

  18. Joost, M., Zeineddine, A., Estévez, L., Mallet-Ladeira, S., Miqueu, K., Amgoune, A., & Bourissou, D. (2014). Facile oxidative addition of aryl iodides to Gold(I) by ligand design: bending turns on reactivity. Journal of the American Chemical Society, 136(42), 14654–14657. https://doi.org/10.1021/ja506978c

    Article  CAS  PubMed  Google Scholar 

  19. Zeineddine, A., Estévez, L., Mallet-Ladeira, S., Miqueu, K., Amgoune, A., & Bourissou, D. (2017). Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nature Communications, 8(1), 565. https://doi.org/10.1038/s41467-017-00672-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winston, M. S., Wolf, W. J., & Toste, F. D. (2014). Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination. Journal of the American Chemical Society, 136, 7777. https://doi.org/10.1038/s41557-019-0295-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia, Z., Corcé, V., Zhao, F., Przybylski, C., Espagne, A., Jullien, L., Le Saux, T., Gimbert, Y., Dossmann, H., Mouriès-Mansuy, V., Ollivier, C., & Fensterbank, L. (2019). Photosensitized oxidative addition to gold(I) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry, 11(9), 797–805. https://doi.org/10.1038/s41557-019-0295-9

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, F., Abdellaoui, M., Berthet, J., Corcé, V., Delbaere, S., Espagne, A., Forté, J., Jullien, L., Le Saux, T., Mouriès, V., Ollivier, C., & Fensterbank, L. (2021). Reactant-induced photoactivation of a gold-catalyzed C sp 2 -C sp cross-coupling leading to indoles. ChemRxiv. https://doi.org/10.33774/chemrxiv-2021-vfvkd-v2

    Article  Google Scholar 

  23. Thongpaen, J., Manguin, R., Dorcet, V., Vives, T., Duhayon, C., Mauduit, M., & Baslé, O. (2019). Visible light induced rhodium(I)-catalyzed C−H borylation. Angewandte Chemie International Edition, 58(43), 15244–15248. https://doi.org/10.1002/anie.201905924

    Article  CAS  PubMed  Google Scholar 

  24. Lennox, A. J. J., & Lloyd-Jones, G. C. (2013). Transmetalation in the suzuki-miyaura coupling: the fork in the trail. Angewandte Chemie International Edition, 52(29), 7362–7370. https://doi.org/10.1002/anie.201301737

    Article  CAS  PubMed  Google Scholar 

  25. Partyka, D. V. (2011). Transmetalation of unsaturated carbon nucleophiles from boron-containing species to the mid to late d-block metals of relevance to catalytic C−X coupling reactions (X = C, F, N, O, Pb, S, Se, Te). Chemical Reviews, 111(3), 1529–1595. https://doi.org/10.1021/cr1002276

    Article  CAS  PubMed  Google Scholar 

  26. Huang, W., Hu, M., Wan, X., & Shen, Q. (2019). Facilitating the transmetalation step with aryl-zincates in nickel-catalyzed enantioselective arylation of secondary benzylic halides. Nature Communications, 10(1), 2963. https://doi.org/10.1038/s41467-019-10851-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K., & MacMillan, D. W. C. (2017). Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science, 355(6323), 380–385. https://doi.org/10.1126/science.aal2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pieber, B., Malik, J. A., Cavedon, C., Gisbertz, S., Savateev, A., Cruz, D., Heil, T., Zhang, G., & Seeberger, P. H. (2019). Semi-heterogeneous dual nickel/photocatalysis using carbon nitrides: esterification of carboxylic acids with aryl halides. Angewandte Chemie International Edition, 58(28), 9575–9580. https://doi.org/10.1002/anie.201902785

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, D.-L., Li, H.-X., Xu, Z.-M., Li, H.-Y., Young, D. J., & Lang, J.-P. (2019). Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Organic Chemistry Frontiers, 6(14), 2353–2359. https://doi.org/10.1039/C9QO00536F

    Article  CAS  Google Scholar 

  30. Lu, J., Pattengale, B., Liu, Q., Yang, S., Li, S., Huang, J., & Zhang, J. (2018). Donor-acceptor fluorophores for energy-transfer-mediated photocatalysis. Journal of the American Chemical Society, 140(42), 13719–13725. https://doi.org/10.1021/jacs.8b07271

    Article  CAS  PubMed  Google Scholar 

  31. Kim, T., McCarver, S. J., Lee, C., & MacMillan, D. W. C. (2018). Sulfonamidation of aryl and heteroaryl halides through photosensitized nickel catalysis. Angewandte Chemie International Edition, 57(13), 3488–3492. https://doi.org/10.1002/anie.201800699

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, D. L., Xu, R., Wu, Q., Li, H. Y., Lang, J. P., & Li, H. X. (2020). Nickel-catalyzed sonogashira C(sp)-C(sp2) coupling through visible-light sensitization. Journal of Organic Chemistry, 85(14), 9201–9212. https://doi.org/10.1021/acs.joc.0c01177

    Article  CAS  Google Scholar 

  33. Sun, R., Qin, Y., Ruccolo, S., Schnedermann, C., Costentin, C., & Nocera, D. G. (2019). Elucidation of a redox-mediated reaction cycle for nickel-catalyzed cross coupling. Journal of the American Chemical Society, 141(1), 89–93. https://doi.org/10.1021/jacs.8b11262

    Article  CAS  PubMed  Google Scholar 

  34. Till, N. A., Tian, L., Dong, Z., Scholes, G. D., & MacMillan, D. W. C. (2020). Mechanistic analysis of metallaphotoredox C–N coupling: photocatalysis initiates and perpetuates Ni(I)/Ni(III) coupling activity. Journal of the American Chemical Society, 142(37), 15830–15841. https://doi.org/10.1021/jacs.0c05901

    Article  CAS  PubMed  Google Scholar 

  35. Sun, R., Qin, Y., & Nocera, D. G. (2020). General paradigm in photoredox nickel-catalyzed cross-coupling allows for light-free access to reactivity. Angewandte Chemie International Edition, 59(24), 9527–9533. https://doi.org/10.1002/anie.201916398

    Article  CAS  PubMed  Google Scholar 

  36. Tellis, J. C., Kelly, C. B., Primer, D. N., Jouffroy, M., Patel, N. R., & Molander, G. A. (2016). Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3–sp2 cross-coupling. Accounts of Chemical Research, 49(7), 1429–1439. https://doi.org/10.1021/acs.accounts.6b00214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364(6439), eaav9713. https://doi.org/10.1126/science.aav9713

    Article  CAS  PubMed  Google Scholar 

  38. Nicholls, T. P., & Bissember, A. C. (2019). Developments in visible-light-mediated copper photocatalysis. Tetrahedron Letters, 60(32), 150883. https://doi.org/10.1016/j.tetlet.2019.06.042

    Article  CAS  Google Scholar 

  39. Paria, S., & Reiser, O. (2018). Visible light and copper complexes: a promising match in photoredox catalysis. Visible light photocatalysis in organic chemistry (pp. 233–251). KGaA: Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527674145.ch7

    Book  Google Scholar 

  40. Creutz, S. E., Lotito, K. J., Fu, G. C., & Peters, J. C. (2012). Photoinduced ullmann C–N coupling: demonstrating the viability of a radical pathway. Science, 338(6107), 647–651. https://doi.org/10.1126/science.1226458

    Article  CAS  PubMed  Google Scholar 

  41. Kainz, Q. M., Matier, C. D., Bartoszewicz, A., Zultanski, S. L., Peters, J. C., & Fu, G. C. (2016). Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science, 351(6274), 681–684. https://doi.org/10.1126/science.aad8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, C., Peters, J. C., & Fu, G. C. (2021). Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature, 596(7871), 250–256. https://doi.org/10.1038/s41586-021-03730-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim, C., Kudisch, M., Liu, B., & Miyake, G. M. (2018). C–N cross-coupling via photoexcitation of nickel-amine complexes. Journal of the American Chemical Society, 140(24), 7667–7673. https://doi.org/10.1021/jacs.8b03744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kudisch, M., Lim, C.-H., Thordarson, P., & Miyake, G. M. (2019). Energy transfer to Ni-amine complexes in dual catalytic, light-driven C–N cross-coupling reactions. Journal of the American Chemical Society, 141(49), 19479–19486. https://doi.org/10.1021/jacs.9b11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang, L., Niu, H.-Y., Li, R.-L., Wang, Y.-F., Yan, J.-K., Li, C.-G., & Guo, H.-M. (2020). Photoinduced copper-catalyzed site-selective C(sp2)–C(sp) cross-coupling via aryl sulfonium salts. Organic Letters, 22(17), 6842–6846. https://doi.org/10.1021/acs.orglett.0c02364

    Article  CAS  PubMed  Google Scholar 

  46. Treacy, S. M., & Rovis, T. (2021). Copper catalyzed C(sp3)–H bond alkylation via photoinduced ligand-to-metal charge transfer. Journal of the American Chemical Society, 143(7), 2729–2735. https://doi.org/10.1021/jacs.1c00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi, G., Lee, G. S., Park, B., Kim, D., & Hong, S. H. (2021). Direct C(sp3)−H trifluoromethylation of unactivated alkanes enabled by multifunctional trifluoromethyl copper complexes. Angewandte Chemie International Edition, 60(10), 5467–5474. https://doi.org/10.1002/anie.202012263

    Article  CAS  PubMed  Google Scholar 

  48. Li, C., Chen, B., Ma, X., Mo, X., & Zhang, G. (2021). Light-promoted copper-catalyzed enantioselective alkylation of azoles. Angewandte Chemie International Edition, 60(4), 2130–2134. https://doi.org/10.1002/anie.202009323

    Article  CAS  PubMed  Google Scholar 

  49. Korvorapun, K., Struwe, J., Kuniyil, R., Zangarelli, A., Casnati, A., Waeterschoot, M., & Ackermann, L. (2020). Photo-induced ruthenium-catalyzed C−H arylations at ambient temperature. Angewandte Chemie International Edition, 59(41), 18103–18109. https://doi.org/10.1002/anie.202003035

    Article  CAS  PubMed  Google Scholar 

  50. Kurandina, D., Parasram, M., & Gevorgyan, V. (2017). Visible light-induced room-temperature heck reaction of functionalized alkyl halides with vinyl arenes/heteroarenes. Angewandte Chemie International Edition, 56(45), 14212–14216. https://doi.org/10.1002/anie.201706554

    Article  CAS  PubMed  Google Scholar 

  51. Torres, G. M., Liu, Y., & Arndtsen, B. A. (2020). A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science, 368(6488), 318–323. https://doi.org/10.1126/science.aba5901

    Article  CAS  PubMed  Google Scholar 

  52. Hwang, S. J., Powers, D. C., Maher, A. G., Anderson, B. L., Hadt, R. G., Zheng, S.-L., Chen, Y.-S., & Nocera, D. G. (2015). Trap-free halogen photoelimination from mononuclear Ni(III) complexes. Journal of the American Chemical Society, 137(20), 6472–6475. https://doi.org/10.1021/jacs.5b03192

    Article  CAS  PubMed  Google Scholar 

  53. Shields, B. J., & Doyle, A. G. (2016). Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. Journal of the American Chemical Society, 138(39), 12719–12722. https://doi.org/10.1021/jacs.6b08397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kariofillis, S. K., & Doyle, A. G. (2021). Synthetic and mechanistic implications of chlorine photoelimination in nickel/photoredox C(sp3)–H cross-coupling. Accounts of Chemical Research, 54(4), 988–1000. https://doi.org/10.1021/acs.accounts.0c00694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heitz, D. R., Tellis, J. C., & Molander, G. A. (2016). Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. Journal of the American Chemical Society, 138(39), 12715–12718. https://doi.org/10.1021/jacs.6b04789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hou, H., Zhou, B., Wang, J., Sun, D., Yu, H., Chen, X., Han, Y., Shi, Y., Yan, C., & Zhu, S. (2021). Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chemical Communications, 57(46), 5702–5705. https://doi.org/10.1039/D1CC01858B

    Article  CAS  PubMed  Google Scholar 

  57. Shields, B. J., Kudisch, B., Scholes, G. D., & Doyle, A. G. (2018). Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. Journal of the American Chemical Society, 140(8), 3035–3039. https://doi.org/10.1021/jacs.7b13281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ting, S. I., Garakyaraghi, S., Taliaferro, C. M., Shields, B. J., Scholes, G. D., Castellano, F. N., & Doyle, A. G. (2020). 3d-d Excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. Journal of the American Chemical Society, 142(12), 5800–5810. https://doi.org/10.1021/jacs.0c00781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sorbonne Université, CNRS and IUF for financial support. Post-doctoral funding for OS from SU Initiative iSiM is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cyril Ollivier or Louis Fensterbank.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Dedicated to Prof. Angelo Albini on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, O., Abdellaoui, M., Millanvois, A. et al. Organometallic catalysis under visible light activation: benefits and preliminary rationales. Photochem Photobiol Sci 21, 585–606 (2022). https://doi.org/10.1007/s43630-022-00181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00181-8

Navigation