Skip to main content

Advertisement

Log in

Incidence and Patterns of Drug Resistance in Patients with Spinal Tuberculosis: a Prospective, Single-Center Study from a Tuberculosis-Endemic Country

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

There is paucity of data on incidence and pattern of drug resistance in spinal TB. This prospective observational study was conducted to document the incidence and drug-resistance pattern among primary and presumptive resistant cases.

Methods

59 consecutive cases diagnosed clinico-radiologically (imaging) were grouped into Group A (n = 51, primary cases) and Group B (n = 8, presumptive resistant cases) based on pre-defined criteria (INDEX-TB guidelines). Tissue samples obtained percutaneously (37.29%, 22/59) and on surgery (62.71%, 37/59) were subjected to genotypic DST (CBNAAT, LPA) and phenotypic DST (BACTEC MGIT 960 culture and sensitivity using fixed critical concentration of drugs).

Results

Etiological diagnosis was ascertained in all. 13/51 (25.49%) in Group A, while 3/8 (37.5%) in Group B and 16/59 (27.12%) overall demonstrated drug resistance. 12/16 (75%) had no prior history of ATT intake. 4 demonstrated INH (Isoniazid) mono-resistance. 12 polydrug resistance demonstrated: 5MDR, 3pre-XDR, while RIF + FQ (fluoroquinolones), FQ + Lz (linezolid), only SLID (second-line injectable drugs), and only FQ resistance observed in 1 case each. Isolated RIF (Rifampicin) resistance and XDR pattern were not observed. Overall frequency of RIF resistance was 16.4% (9/55) and INH was 25% (12/48) with low-(n–2) and high-level INH resistance (n–10). Among second-line drugs, FQ resistance was more than SLID resistance and within FQ, levofloxacin resistance was more frequent than moxifloxacin. MGIT demonstrated positive growth in 16/59 samples, out of which 1 sample was positive for nontuberculous mycobacteria (M. chelonae) but on genotypic testing demonstrated MTB resistant to RIF and FQ.

Conclusion

This is the first report on incidence and drug-resistant pattern in culture-positive/negative cases. High (25.49%) primary drug resistance is worrisome. This being the first study in  spinal TB cases which document prevalent drug-resistant pattern as evaluated for consecutive culture-positive/negative cases. The tissue obtained must be submitted for AFB culture and molecular tests to ascertain drug resistance in culture-positive/negative cases. However, in the presence of insufficient tissue sample histology and CBNAAT can ascertain etiological diagnosis in 100% cases. INH resistance is more than RIF with isolated RIF resistance unreported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu, L., Jian-Zhong, X., Xue-Mei, L., & Bao-Feng, G. (2013). Drug susceptibility testing guided treatment for drug resistant spinal tuberculosis: a retrospective analysis of 19 patients? Int Surg, 98(2), 175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang, Z., Luo, F., Zhou, Q., Dai, F., Sun, D., & Xu, J. (2016). The outcomes of chemotherapy only treatment on mild spinal tuberculosis. J OrthopSurg Res., 11, 49.

    Google Scholar 

  3. Pawar, U. M., Kundnani, V., Agashe, V., Nene, A., & Nene, A. (2009). Multidrug-resistant tuberculosis of the spine–is it the beginning of the end. A study of twenty-five culture proven multidrug-resistant tuberculosis spine patients. Spine., 34(22), 806–810.

    Article  Google Scholar 

  4. Lee, J. Y. (2015). Diagnosis and treatment of extrapulmonary tuberculosis. TubercRespir Dis., 78(2), 47–55.

    Google Scholar 

  5. Jain, A. K., Jena, S. K., Singh, M. P., Dhammi, I. K., Ramachadran, V. G., & Dev, G. (2008). Evaluation of clinico-radiological, bacteriological, serological, molecular and histological diagnosis of osteoarticular tuberculosis. Ind J Ortho, 42(2), 173–177.

    Article  Google Scholar 

  6. Abhimanyu, S., Jain, A. K., Myneedu, V. P., Arora, V. K., Chadha, M., & Sarin, R. (2021). The Role of cartridge-based nucleic acid amplification test (CBNAAT), Line Probe Assay (LPA), Liquid Culture, Acid-Fast Bacilli (AFB) smear and histopathology in the diagnosis of osteoarticular tuberculosis. Indian J Orthop., 55(Suppl 1), 157–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kent PT, Kubica GP. Public health mycobacteriology. A guide for the level III laboratory. Atlanta, GA: Centers for Disease Control, U.S. Department of Health and Human Services; 1985. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB86216546.xhtml.

  8. Lee, C. N., & Heifets, L. B. (1987). Determination of minimal inhibitory concentrations of antituberculosis drugs by radiometric and conventional methods. American Review of Respiratory Disease., 136(2), 349–352.

    Article  CAS  PubMed  Google Scholar 

  9. Boehme, C. C., Nabeta, P., Hillemann, D., et al. (2010). Rapid molecular detection of tuberculosis and rifampin resistance. New England Journal of Medicine, 363(11), 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  10. Oommen, S., & Banaji, N. (2017). Laboratory diagnosis of tuberculosis: advances in technology and drug susceptibility testing. Indian Journal of Medical Microbiology, 35(3), 323.

    Article  PubMed  Google Scholar 

  11. Li, L., Zhang, Z., Luo, F., Xu, J., Cheng, P., Wu, Z., et al. (2012). Management of drug-resistant spinal tuberculosis with a combination of surgery and individualized chemotherapy: A retrospective analysis of thirty-five patients. International Orthopaedics., 36, 277–283.

    Article  PubMed  Google Scholar 

  12. World Health Organisation. (2014). Rapid implementation of the Xpert MTB/RIF diagnosis test. Technical and operational “How to” practical considerations. World Health Organization 2014; WHO/HTM/TB/20112. Geneva: World Health Organization.

    Google Scholar 

  13. Central TB division: Index TB guidelines-Guidelines for extrapulmonary tuberculosis for India. 2016. https://tbcindia.gov.in/showfilephp?lid=3245.

  14. Jain, A. K., Dhammi, I. K., Modi, P., Kumar, J., Sreenivasan, R., & Saini, N. S. (2012). Tuberculosis spine: therapeutically refractory disease. Indian Journal of Orthopaedics, 46, 171–178.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jain, A. K., & Sinha, S. (2005). Evaluation of paraplegia grading systems in tuberculosis of the spine. Spinal Cord., 43(6), 375–380.

    Article  CAS  PubMed  Google Scholar 

  16. Central TB division: Technical and Operational Guidelines for TB Control in India-Chapter 4-Treatment of TB Part 1.2016. https://www.tbcindia.gov.in/showfile.php?lid=3219.

  17. Central TB division: Guidelines on PMDT in India.2017. https://www.tbcindia.gov.in/index1.php?lang=1&level=2&sublinkid=4780&lid=3306.

  18. World Health Organisation. (2013). Xpert MTB/RIF assay for diagnosis of pulmonary and extrapulmonary TB in adults and children Policy update WHO/HTM/TB/ 201316. Geneva: World Health Organization.

    Google Scholar 

  19. World Health Organization. (2008). Molecular line probe assays for rapid screening of patients at risk of multidrug resistant tuberculosis (MDR-TB). Geneva: World Health Organization.

    Google Scholar 

  20. Grady, J., Maeurer, M., Mwaba, P., Kapata, N., Bates, M., Hoelscher, M., et al. (2011). New and improved diagnostics for detection of drug-resistant pulmonary tuberculosis. Current Opinion in Pulmonary Medicine., 17(3), 134–141.

    Article  Google Scholar 

  21. Garg, R. K., & Somvanshi, D. S. (2011). Spinal tuberculosis: a review. Journal of Spinal Cord Medicine, 34(5), 440–454.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jain, A. K., Rajasekaran, S., Jaggi, K. R., & Myneedu, V. P. (2020). Tuberculosis of the Spine. Journal of Bone and Joint Surgery, 102(7), 617–628.

    Article  Google Scholar 

  23. World Health Organization. Anti-tuberculosis drug resistance in the world report no4WHO/HTM/TB/2008394. Geneva: World Health Organization.

  24. Moon, M. S. (2014). Tuberculosis of spine: current views in diagnosis and management. Asian Spine J., 8(1), 97–111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bastian, I., Rigouts, L., Van Deun, A., & Portaels, F. (2000). Directly observed treatment, short-course strategy and multidrug- resistant tuberculosis: are any modifications required? Bulletin of the World Health Organization, 78, 238–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma, S. K., & Mohan, A. (2004). Multidrug-resistant tuberculosis. Indian Journal of Medical Research, 120, 354–376.

    CAS  PubMed  Google Scholar 

  27. Vadwai, V., Boehme, C., Nabeta, P., Shetty, A., Alland, D., & Rodrigues, C. (2011). Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J ClinMicrobiol., 49(7), 2540–2545.

    Google Scholar 

  28. Gu, Y., Wang, G., Dong, W., Li, Y., Ma, Y., Shang, Y., Qin, S., & Huang, H. (2015). Xpert MT/RIF and GenoTypeMTBDRplus assays for the rapid diagnosis of bone and joint tuberculosis. International Journal of Infectious Diseases, 36, 27–30.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma, A., Chhabra, H. S., Mahajan, R., Chabra, T., & Batra, S. (2016). Magnetic Resonance imaging and GeneXpert®: a rapid and accurate diagnostic tool for the management of tuberculosis of the Spine. Asian Spine J., 10(5), 850–856.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jain, A., Singh, P. K., Chooramani, G., Dixit, P., & Malhotra, H. S. (2016). Drug resistance and associated genetic mutations among patients with suspected MDR-TB in Uttar Pradesh India. Int J Tuberc Lung Dis, 20(7), 870–875.

    Article  CAS  PubMed  Google Scholar 

  31. Isaac, A., & Kunimoto, D. (2016). Treatment Outcomes in Low-Level Isoniazid Resistant Tuberculosis. Open Forum Infectious Diseases, 3(1), 559.

    Article  Google Scholar 

  32. Lawn, S. D., & Zumla, A. I. (2012). Diagnosis of extrapulmonary tuberculosis using the Xpert® MTB/RIF assay. Expert Rev Anti Infect Ther., 10(6), 631–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomasicchio, M., Theron, G., Pietersen, E., Streicher, E., Stanley-Josephs, D., Van Helden, P., Warren, R., & Dheda, K. (2015). The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci Rep, 6, 17850.

    Article  Google Scholar 

  34. Brossier, F., Veziris, N., Aubry, A., Jarlier, V., & Sougakoff, W. (2010). Detection by GenoTypeMTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. Journal of Clinical Microbiology, 48, 1683–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiet, V. S., Lan, N. T., An, D. D., Dung, N. H., Hoa, D. V., & van Vinh, C. N. (2010). Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol, 48, 2934–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi, J., Tang, X., Xu, Y., Zhou, T., Pan, X., Lin, H., et al. (2014). Single-stage internal fixation for thoracolumbar spinal tuberculosis using 4 different surgical approaches. J Spinal Disord Techn., 27, E247–E257.

    Article  Google Scholar 

  37. Mohan, K., Rawall, S., Pawar, U. M., et al. (2013). Drug resistance patterns in 111 cases of drug-resistant tuberculosis spine. Eur Spine J, 22, 647–652.

    Article  PubMed  Google Scholar 

  38. Bhosale, S., Prabhakar, A., Srivastava, S., Raj, A., Purohit, S., & Marathe, N. (2021). Pattern of drug resistance in primary spinal tuberculosis: a single-center study from India. Global Spine J., 11(7), 1070–1075.

    Article  PubMed  Google Scholar 

  39. Sharma, S. K., Kohli, M., Yadav, R. N., Chaubey, J., Bhasin, D., Sreenivas, V., et al. (2015). Evaluating the diagnostic accuracy of Xpert MTB/RIF assay in pulmonary tuberculosis. PLoS ONE, 10(10), e0141011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Jain.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Jain, A.K., Singhal, R. et al. Incidence and Patterns of Drug Resistance in Patients with Spinal Tuberculosis: a Prospective, Single-Center Study from a Tuberculosis-Endemic Country. JOIO 57, 1833–1841 (2023). https://doi.org/10.1007/s43465-023-00986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-00986-4

Keywords

Navigation