Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell Therapy in Chondral Defects of Knee: Current Concept Review

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Full-thickness cartilage defects if left alone would increase the risk of osteoarthritis (OA) with severe associated pain and functional disability. Articular cartilage defect may result from direct trauma or chronic degeneration. The capability of the mesenchymal stem cells (MSCs) to repair and regenerate cartilage has been widely investigated. This review describes current trends in MSC biology, the sourcing, expansion, application and role of MSCs in chondral defects of human knees.

Methods

The studies referencing MSCs and knee osteoarthritis were searched (from1998 to 2020) using PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (MSCs, chondral defects or cartilage degeneration of knee, cartilage regeneration, chondrogenesis, tissue engineering, efficacy and safety). The inclusion criteria were based on use of MSCs for treatment of chondral defects and osteoarthritis of the knee, English language and human studies.

Results

The history of MSC research from the initial discovery of their multipotency to the more recent recognition of their role in cartilage defects of knee is elucidated. Several studies have demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant or independent procedure. Intra-articular MSCs provide improvements in pain and function in knee osteoarthritis at short-term follow-up in many studies. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome is a common issue faced by researchers.

Conclusion

Some efficacy has been shown of MSCs for cartilage repair in osteoarthritis; however, the evidence of efficacy of intra-articular MSCs on both clinical outcomes and cartilage repair remains limited. Despite the high quality of evidence to support, MSC therapy has emerged but further refinement of methodology will be necessary to support its routine clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldershaw, R. A. (2012). Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. International Journal of Experimental Pathology, 93(6), 389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Redman, S. N., Oldfield, S. F., & Archer, C. W. (2005). Current strategies for articular cartilage repair. European Cells and Materials, 9, 23–32.

    CAS  PubMed  Google Scholar 

  3. Magne, D., Vinatier, C., Julien, M., Weiss, P., & Guicheux, J. (2005). Mesenchymal stem cell therapy to rebuild cartilage. Trends in molecular Medicine, 11, 519–526.

    CAS  PubMed  Google Scholar 

  4. Koga, H., Engebretsen, L., Brinchmann, J. E., Muneta, T., & Sekiya, I. (2009). Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surgery, Sports Traumatology, Arthroscopy, 17, 1289–1297.

    PubMed  Google Scholar 

  5. Scharstuhl, A., Schewe, B., Benz, K., Gaissmaier, C., Buhring, H.-J., & Stoop, R. (2007). Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells, 25, 3244–3251.

    CAS  PubMed  Google Scholar 

  6. Hui, J. H. P., & Marchie, A. (2003). Current management of cartilage defect: a review. APLAR Journal of Rheumatology, 6, 170–177.

    Google Scholar 

  7. Medvedeva, E. V., Grebenik, E. A., Gornostaeva, S. N., Telpuhov, V. I., Lychagin, A. V., Timashev, P. S., et al. (2018). Repair of damaged articular cartilage: current approaches and future directions. International Journal of Molecular Sciences, 19(8), 2366.

    PubMed Central  Google Scholar 

  8. Gigante, A., Cecconi, S., Calcagno, S., Busilacchi, A., & Enea, D. (2012). Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthroscopy Techniques, 1(2), e175–e180.

    PubMed  PubMed Central  Google Scholar 

  9. Orth, P., Gao, L., & Madry, H. (2020). Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surgery, Sports Traumatology, Arthroscopy, 28(3), 670–706.

    PubMed  Google Scholar 

  10. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331, 889–895.

    CAS  PubMed  Google Scholar 

  11. Matricali, G. A., Dereymaeker, G. P., & Luyten, F. P. (2010). Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthopaedica Belgica, 76(5), 669–674.

    PubMed  Google Scholar 

  12. Tallheden, T., Bengtsson, C., Brantsing, C., Sjogren-Jansson, E., Carlsson, L., Peterson, L., et al. (2005). Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Research and Therapy, 7(3), R560–R568.

    CAS  PubMed  Google Scholar 

  13. Goldring, M. B., & Berenbaum, F. (2004). The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clinical Orthopaedics and Related Research, 427(Suppl), S37–S46.

    Google Scholar 

  14. Caplan, A. I. (2010). Mesenchymal stem cells: the past, the present, the future. Cartilage, 1(1), 6–9.

    PubMed  PubMed Central  Google Scholar 

  15. Punwar, S., & Khan, W. S. (2011). Mesenchymal stem cells and articular cartilage repair: clinical studies and future direction. The Open Orthopaedics Journal, 5(Suppl 2-M11), 296–301.

    PubMed  PubMed Central  Google Scholar 

  16. Park, S., & Im, G.-I. (2014). Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration. Tissue Engineering Part B: Reviews, 20(5), 381–391.

    Google Scholar 

  17. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy., 7(5), 393–395.

    CAS  PubMed  Google Scholar 

  18. Zhang, R., Ma, J., Han, J., Zhang, W., & Ma, J. (2019). Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. American Journal of Translational Research, 11(10), 6275–6289.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg, A., Mitchell, K., Soans, J., Kim, L., & Zaidi, R. (2017). The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. Journal of Orthopaedic Surgery and Research, 12(39), 2–30.

    Google Scholar 

  20. Steck, E., Fischer, J., Lorenz, H., et al. (2009). Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem Cells and Development, 18(7), 969–978.

    CAS  PubMed  Google Scholar 

  21. Teo, A. Q. A., Wong, K. L., Shen, L., Lim, J. Y., Toh, W. S., Lee, E. H., et al. (2019). Equivalent 10-Year out comes after implantation of autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation for chondral defects of the knee. American Journal of Sports Medicine, 47(12), 2881–2887.

    PubMed  Google Scholar 

  22. Freitag, J., Bates, D., Wickham, J., Shah, K., Huguenin, L., Tenen, A., et al. (2019). Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regenerative Medicine, 14(3), 213–230.

    CAS  PubMed  Google Scholar 

  23. Danišovič, L., Boháč, M., Zamborský, R., et al. (2016). Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. General Physiology and Biophysics., 35(2), 207–214.

    PubMed  Google Scholar 

  24. Kuroda, K., Kabata, T., Hayashi, K., et al. (2015). The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskeletal Disorders, 16(1), 236.

    PubMed  PubMed Central  Google Scholar 

  25. Kretlow, J. D., Jin, Y. Q., Liu, W., et al. (2008). Donor age and cell passage affects differentiation potential of murine bone marrow derived stem cells. BMC Cell Biology., 9(1), 60.

    PubMed  PubMed Central  Google Scholar 

  26. Monaco, M. L., Merckx, G., Ratajczak, J., Gervois, P., Hilkens, P., Clegg, P., et al. (2018). Stem cells for cartilage repair: preclinical studies and insights in translational animal models and outcome measures. Stem Cells International, 2018, 9079538. https://doi.org/10.1155/2018/9079538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guzzo, R. M., Gibson, J., Xu, R. H., Lee, F. Y., & Drissi, H. (2013). Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. Journal of Cellular Biochemistry, 114(2), 480–490.

    CAS  PubMed  Google Scholar 

  28. Nam, Y., Rim, Y. A., Lee, J., & Ju, J. H. (2018). Current therapeutic strategies for cell based cartilage regeneration. Stem Cells International, 2018, 8490489. https://doi.org/10.1155/2018/8490489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry, A93, 19–31.

    Google Scholar 

  30. Enea, D., Cecconi, S., Calcagno, S., et al. (2013). Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. The Knee, 20(6), 562–569.

    CAS  PubMed  Google Scholar 

  31. Lee, W. Y., & Wang, B. (2017). Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. Journal of Orthopaedic Translation, 9, 76–88.

    PubMed  PubMed Central  Google Scholar 

  32. Pountos, I., Corscadden, D., Emery, P., & Giannoudis, P. V. (2007). Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury, 38(S4), S23–33.

    PubMed  Google Scholar 

  33. Mizukami, A., & Swiech, K. (2018). Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cells International, 2018, 4083921. https://doi.org/10.1155/2018/4083921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panchalingam, K. M., Jung, S., Rosenberg, L., & Behie, L. A. (2015). Bioprocessing strategies for the large-scale production of human mesenchymal stem cells :a review. Stem Cell Research and Therapy, 6, 225.

    PubMed  Google Scholar 

  35. Rowley, J., Abraham, E., Campbell, A., Brandwein, H., & Oh, S. (2012). Meeting lot-size challenges of manufacturing adherent cells for therapy. Bioprocess International, 10, 16–22.

    CAS  Google Scholar 

  36. Lam, A. T. L., Reuveny, S., & Oh, S. (2020). Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Research, 101738, 1–14.

    Google Scholar 

  37. Shimomura, K., Ando, W., Fujie, H., Hart, D. A., Yoshikawa, H., & Nakamura, N. (2018). Scaffold-free tissue engineering for injured joint surface restoration. Journal of Experimental Orthopaedics, 5(1), 2.

    PubMed  PubMed Central  Google Scholar 

  38. Ando, W., Tateishi, K., Hart, D. A., Katakai, D., Tanaka, Y., Nakata, K., et al. (2007). Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 18, 5462–5470.

    Google Scholar 

  39. Wakitani, S., Nawata, M., Tensho, K., Okabe, T., Machida, H., & Ohgushi, H. (2007). Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine, 1(1), 74–79.

    PubMed  Google Scholar 

  40. Li, Z., Kupcsik, L., Yao, S.-J., Alini, M., & Stoddart, M. J. (2009). Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Engineering Part A, 15(7), 1729–1737.

    CAS  PubMed  Google Scholar 

  41. Bornes, T. D., Jomha, N. M., Mulet-Sierra, A., & Adesida, A. B. (2016). Optimal seeding densities for In Vitro chondrogenesis of two- and three-dimensional-isolated and—expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Engineering Part C: Methods, 22(3), 208–220.

    CAS  Google Scholar 

  42. Yokoyama, A., Sekiya, I., Miyazaki, K., Ichinose, S., Hata, Y., & Muneta, T. (2005). In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell and Tissue Research, 332, 289–298.

    Google Scholar 

  43. Yu, D. A., Han, J., & Kim, B. S. (2012). Stimulation of chondrogenic differentiation of mesenchymal stem cells. International Journal of Stem Cells, 5(1), 16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dave, L. Y. H., Nyland, J., McKee, P. B., & Caborn, D. N. M. (2012). Mesenchymal stem cell therapy in the sports knee: where are we in 2011? Sports Health, 4(3), 252–257.

    PubMed  PubMed Central  Google Scholar 

  45. Armiento, A. R., Stoddart, M. J., Alini, M., & Eglin, D. (2018). Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomaterialia, 65, 1–20.

    CAS  PubMed  Google Scholar 

  46. Xu, Y., Kim, C. S., Saylor, D. M., & Koo, D. (2017). Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. Journal of Biomedical Materials Research, 105, 1692–1716.

    CAS  PubMed  Google Scholar 

  47. Rai, V., Dilisio, F. M., Dietz, N. E., & Agrawal, D. K. (2017). Recent Strategies in Cartilage Repair: A systemic review of the scaffold development and tissue engineering. Journal of Biomedical Materials Research Part A, 105(8), 2343–2354.

    CAS  PubMed  Google Scholar 

  48. Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431.

    CAS  PubMed  Google Scholar 

  49. Tare, R. S., Howard, D., Pound, J. C., Roach, H. I., & Oreffo, R. O. C. (2005). Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochemical and Biophysical Research Communications, 333(2), 609–621.

    CAS  PubMed  Google Scholar 

  50. Johnstone, B., Hering, T. M., Caplan, A. L., Goldberg, V. M., & Joo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.

    CAS  PubMed  Google Scholar 

  51. Nimura, A., Muneta, T., Koga, H., et al. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis and Rheumatism, 58, 501–510.

    CAS  PubMed  Google Scholar 

  52. Centeno, C. J., Busse, D., Kisiday, J., Keohan, C., Freeman, M., & Karli, D. (2008). Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Medical Hypotheses, 71(6), 900–908.

    CAS  PubMed  Google Scholar 

  53. Orozco, L., Munar, A., Soler, R., et al. (2013). Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A Pilot Study. Transplantation, 95(12), 1535–1541.

    CAS  PubMed  Google Scholar 

  54. Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F., & Nikbin, B. (2011). Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. International Journal of Rheumatic Diseases, 14(2), 211–215.

    PubMed  Google Scholar 

  55. Emadedin, M., Liastani, M. G., Fazeli, R., et al. (2015). Long-term follow-up of intra-articular injection of autologous mesenchymal stem cells in patients with knee, ankle, or hip osteoarthritis. Archives of Iranian Medicine, 18(6), 336–344.

    PubMed  Google Scholar 

  56. Wong, K. L., Lee, K. B., Tai, B. C., Law, P., Lee, E. H., & Hui, J. H. (2013). Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy, 29(12), 2020–2028.

    PubMed  Google Scholar 

  57. Kobayashi, T., Ochi, M., Yanada, S., Ishikawa, M., Adachi, N., Deie, M., et al. (2008). A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 24, 69–76.

    PubMed  Google Scholar 

  58. Ikuta, Y., Kamei, N., Ishikawa, M., Adachi, N., & Ochi, M. (2015). In vivo kinetics of mesenchymal stem cells transplanted into the knee joint in a rat model using a novel magnetic method of localization. Clinical and Translational Science, 8(5), 467–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cotter, E. J., Wang, K. C., Yanke, A. B., & Chubinskaya, S. (2018). Bone marrow aspirate concentrate for cartilage defects of the knee: from bench to bedside evidence. Cartilage., 9(2), 161–170.

    CAS  PubMed  Google Scholar 

  60. Soler, R. R., Munar, A., Soler, R. F., et al. (2015). Treatment of knee osteoarthritis with autologous expanded bone marrow mesenchymal stem cells:50 cases clinical and MRI results at one year follow-up. Journal of Stem Cell Research and Therapy, 5(6), 2–7.

    Google Scholar 

  61. Lamo-Espinosa, J. M., Mora, G., Blanco, J. F., et al. (2016). Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). Journal of Translational Medicine, 14(1), 246. https://doi.org/10.1186/s12967-016-0998-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., et al. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells, 32, 1254–1266.

    CAS  PubMed  Google Scholar 

  63. Skowroński, J., & Rutka, M. (2013). Osteochondral lesions of the knee reconstructed with mesenchymal stem cells—results. Ortopedia, Traumatologia, Rehabilitacja, 15(3), 195–204.

    PubMed  Google Scholar 

  64. Chahla, J., Dean, C. S., Moatshe, G., Pascual-Garrido, C., Serra Cruz, R., & LaPrade, R. F. (2016). Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthopaedic Journal of Sports Medicine, 4(1), 2325967115625481. https://doi.org/10.1177/232596711562548.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gobbi, A., & Whyte, G. P. (2016). One-stage cartilage repair using a hyaluronic acid–based scaffold with activated bone marrow—derived mesenchymal stem cells compared with microfracture: five-year follow-up. American Journal of Sports Medicine, 44(11), 2846–2854.

    PubMed  Google Scholar 

  66. Ha, C. W., Park, Y. B., Kim, S. H., & Lee, H. J. (2019). Intra-articular mesenchymal stem cells in osteoarthritis of the knee: A systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy, 35(1), 277–288.

    PubMed  Google Scholar 

  67. Kim, S. H., Ha, C. W., Park, Y. B., Nam, E., Lee, J. E., & Lee, H. J. (2019). Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: A meta-analysis of randomized controlled trials. Archives of Orthopaedic and Trauma Surgery, 139(7), 971–980.

    PubMed  Google Scholar 

  68. Kim, J. D., Lee, G. W., Jung, G. H., et al. (2014). Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. European Journal of Orthopaedic Surgery and Traumatology, 24, 1505–1511.

    PubMed  Google Scholar 

  69. Kuroda, R., Ishida, K., Matsumoto, T., Akisue, T., Fujioka, H., Mizuno, K., et al. (2007 Feb). Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis and Cartilage, 15(2), 226–231.

    CAS  PubMed  Google Scholar 

  70. Wakitani, S., Mitsuoka, T., Nakamura, N., Toritsuka, Y., Nakamura, Y., & Horibe, S. (2004). Autologous bone marrow stromal cell transplantation for repair of full thickness articular cartilage defects in human patellae: two case reports. Cell Transplantation, 13(5), 595–600.

    PubMed  Google Scholar 

  71. de Windt, T. S., Vonk, L. A., Slaper-Cortenbach, I. C., van den Broek, M. P., Nizak, R., van Rijen, M. H., et al. (2017). Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells., 35(1), 256–264.

    PubMed  Google Scholar 

  72. Akgun, I., Unlu, M. C., Erdal, O. A., Ogut, T., Erturk, M., Ovali, M., et al. (2015). Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: A 2-year randomized study. Archives of Orthopaedic and Trauma Surgery, 135(2), 251–263.

    PubMed  Google Scholar 

  73. Kim, Y. S., Choi, Y. J., Suh, D. S., et al. (2015). Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? American Journal of Sports Medicine, 43(1), 1–10.

    CAS  Google Scholar 

  74. Nejadnik, H., Hui, J. H., FengChoong, E. P., Tai, B. C., & Lee, E. H. (2010). Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. American Journal of Sports Medicine, 38, 1110–1116.

    PubMed  Google Scholar 

  75. Emadedin, M., Labibzadeh, N., Liastani, M. G., et al. (2018). Intra-articular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy., 20(10), 1238–1246.

    PubMed  Google Scholar 

  76. Gigante, A., Calcagno, S., Cecconi, S., Ramazzotti, D., Manzotti, S., & Enea, D. (2011). Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. International Journal of Immunopathology and Pharmacology, 24, 69–72.

    CAS  PubMed  Google Scholar 

  77. Gobbi, A., Karnatzikos, G., Scotti, C., Mahajan, V., Mazzucco, L., & Grigolo, B. (2011). One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage, 2, 286–299.

    PubMed  PubMed Central  Google Scholar 

  78. Buda, R., Vannini, F., Cavallo, M., et al. (2010). Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow derived cells. Journal of Bone and Joint Surgery. American Volume, 92(Suppl 2), 2–11.

    Google Scholar 

  79. Buda, R., Vannini, F., Cavallo, M., et al. (2013). One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskeletal Surgery, 97(2), 145–151.

    PubMed  Google Scholar 

  80. Haleem, A., El-Singergy, A., Sabry, D., et al. (2010). The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage, 1(4), 253–261.

    PubMed  PubMed Central  Google Scholar 

  81. Koh, Y. G., Choi, Y. J., Kwon, O. R., & Kim, Y. S. (2014). Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. American Journal of Sports Medicine, 42, 1628–1637.

    PubMed  Google Scholar 

  82. Wakitani, S., Okabe, T., Horibe, S., Mitsuoka, T., Saito, M., Koyama, T., et al. (2011). Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 5, 146–150.

    PubMed  Google Scholar 

  83. Awad, M. E., Hussein, K. A., Helwa, I., Abdelsamid, M. F., et al. (2019). Meta-Analysis and evidence base for the efficacy of autologous bone marrow mesenchymal stem cells in knee cartilage repair: methodological guidelines and quality assessment. Stem Cells International, 2019, 3826054.

    PubMed  PubMed Central  Google Scholar 

  84. Wang, M., Yuan, Z., Ma, N., Hao, C., et al. (2017). Advances and prospects in stem cells for cartilage regeneration. Stem Cells International, 2017, 4130607. https://doi.org/10.1155/2017/4130607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arshi, A., Petrigliano, F. A., Williams, R. J., & Jones, K. J. (2020). Stem cell treatment for knee articular cartilage defects and osteoarthritis. Current Reviews in Musculoskeletal Medicine, 13(1), 20–27.

    PubMed  PubMed Central  Google Scholar 

  86. Zhang, S., Chu, W. C., Lai, R. C., Lim, S. K., Hui, J. H., & Toh, W. S. (2016). Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage, 24, 2135–2140.

    CAS  PubMed  Google Scholar 

  87. Steinert, A., Noth, U., & Tuan, R. (2008). Concepts in gene therapy for cartilage repair. Injury, 39(Suppl 1), S97–113.

    PubMed  PubMed Central  Google Scholar 

  88. Cucchiarini, M., & Madry, H. (2018). Advances in gene therapy for cartilage repair. Annals of Joint, 3(97), 1–9.

    Google Scholar 

  89. Brunger, J. M., Huynh, N. P., Guenther, B. M., et al. (2014). Scaffold mediated lentiviral transduction for functional tissue engineering of cartilage. Proceedings of the National Academy of Sciences USA, 111, E798–E806.

    CAS  Google Scholar 

  90. Zhang, M., & Wang, J. (2015). Epigenetics and osteoarthritis. Genes and Diseases, 2(1), 69–75.

    CAS  PubMed  Google Scholar 

  91. Ozkul, Y., & Galderisi, U. (2016). The impact of epigenetics on mesenchymal stem cell biology. Journal of Cellular Physiology, 9999, 1–9.

    Google Scholar 

Download references

Funding

No grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal K. Debnath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, U.K. Mesenchymal Stem Cell Therapy in Chondral Defects of Knee: Current Concept Review. JOIO 54 (Suppl 1), 1–9 (2020). https://doi.org/10.1007/s43465-020-00198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00198-0

Keywords

Navigation