Skip to main content
Log in

Additive manufacturing of metallic biomaterials: a concise review

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is one of the critical techniques of novel medical devices which is capable of processing complicated or customized structures to best match the human’s bones and tissues. AM allows for the fabrication of devices with optimal architectures, complicated morphologies, surface integrity, and regulated porosity and chemical composition. Various AM methods can now consistently fabricate dense products for a range of metallic, nonmetallic, composites, and nanocomposites. Different studies are available that describe the microstructure and various properties of 3D-printed biomedical alloys. However, there are limited research on the wear characteristics, corrosion resistance, and biocompatibility of 3D-printed technology-constructed biomedical alloys. In this article, AM metallic biomaterials such as stainless steel, magnesium, cobalt–chromium, and titanium are reviewed along with their alloys. The helicopter view of essential characteristics of these additively manufactured biomaterials is comprised. The review will have a significant impact on fabricating metallic surgical equipment and its sturdiness in the biomedical field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh S, Prakash C, Ramakrishna S. 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J. 2019;114:234–48. https://doi.org/10.1016/J.EURPOLYMJ.2019.02.035.

    Article  CAS  Google Scholar 

  2. Festas AJ, Ramos A, Davim JP. Medical devices biomaterials—a review. Proc Inst Mech Eng L. 2019;234:218–28. https://doi.org/10.1177/1464420719882458.

    Article  CAS  Google Scholar 

  3. Singh G, Sidhu SS, Bains PS, Singh M, Bhui AS. On surface modification of Ti alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J Bio- Tribo-Corros. 2020;6:1–11. https://doi.org/10.1007/S40735-020-00389-0.

    Article  CAS  Google Scholar 

  4. Mahajan A, Sidhu SS, Ablyaz T. EDM surface treatment: an enhanced biocompatible interface. Singapore: Springer Singapore; 2019. p. 33–40. https://doi.org/10.1007/978-981-13-9977-0_3.

    Book  Google Scholar 

  5. Acharya S, Soni R, Suwas S, Chatterjee K. Additive manufacturing of Co–Cr alloys for biomedical applications: a concise review. J Mater Res. 2021;36:3746–60. https://doi.org/10.1557/S43578-021-00244-Z.

    Article  CAS  ADS  Google Scholar 

  6. bookTitle Additive Manufacturing of Metals, 67 (2020). https://doi.org/10.21741/9781644900635.

  7. Zuback JS, DebRoy T. The hardness of additively manufactured alloys. Materials. 2018;11:2070. https://doi.org/10.3390/MA11112070.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Yang HG. Numerical simulation of the temperature and stress state on the additive friction stir with the smoothed particle hydrodynamics method. Strength Mater. 2020;52:24–31. https://doi.org/10.1007/S11223-020-00146-1.

    Article  Google Scholar 

  9. Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater Process Technol. 2020;6:167–202. https://doi.org/10.1080/2374068X.2020.1731236.

    Article  Google Scholar 

  10. Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573–87. https://doi.org/10.1016/J.JCLEPRO.2016.04.150.

    Article  Google Scholar 

  11. Hodonou C, Balazinski M, Brochu M, Mascle C. Material-design-process selection methodology for aircraft structural components: application to additive vs subtractive manufacturing processes. Int J Adv Manuf Technol. 2019;103:1509–17. https://doi.org/10.1007/S00170-019-03613-5.

    Article  Google Scholar 

  12. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45–111. https://doi.org/10.1016/J.PMATSCI.2017.08.003.

    Article  PubMed  Google Scholar 

  13. Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018;66:6–22. https://doi.org/10.1016/J.ACTBIO.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar R, Kumar M, Chohan JS. The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process. 2021;64:828–50. https://doi.org/10.1016/J.JMAPRO.2021.02.022.

    Article  Google Scholar 

  15. Shields Y, De Belie N, Jefferson A, al -, X. Wu, Y. Su, J. Shi, S. Paul, A. Nath, S. Shekhar Roy,. Additive manufacturing of multi-functional biomaterials for bioimplants: a review. IOP Conf Ser Mater Sci Eng. 2021;1136:012016. https://doi.org/10.1088/1757-899X/1136/1/012016.

    Article  Google Scholar 

  16. Chua K, Khan I, Malhotra R, Zhu D. Additive manufacturing and 3D printing of metallic biomaterials. Eng Regen. 2021;2:288–99. https://doi.org/10.1016/J.ENGREG.2021.11.002.

    Article  Google Scholar 

  17. Hedlundh U, Karlsson L. Combining a hip arthroplasty stem with trochanteric reattachment bolt and a polyaxial locking plate in the treatment of a periprosthetic fracture below a well-integrated implant. Arthroplast Today. 2016;2:141–5. https://doi.org/10.1016/J.ARTD.2016.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saikko V, Ahlroos T, Revitzer H, Ryti O, Kuosmanen P. The effect of acetabular cup position on wear of a large-diameter metal-on-metal prosthesis studied with a hip joint simulator. Tribol Int. 2013;60:70–6. https://doi.org/10.1016/J.TRIBOINT.2012.10.011.

    Article  CAS  Google Scholar 

  19. Tischler M, Patch C, Bidra AS. Rehabilitation of edentulous jaws with zirconia complete-arch fixed implant-supported prostheses: an up to 4-year retrospective clinical study. J Prosthet Dent. 2018;120:204–9. https://doi.org/10.1016/J.PROSDENT.2017.12.010.

    Article  PubMed  Google Scholar 

  20. Ibrahim MZ, Halilu A, Sarhan AAD, Kuo TY, Yusuf F, Shaikh MO, Hamdi M. In-vitro viability of laser cladded Fe-based metallic glass as a promising bioactive material for improved osseointegration of orthopedic implants. Med Eng Phys. 2022;102:103782. https://doi.org/10.1016/J.MEDENGPHY.2022.103782.

    Article  PubMed  Google Scholar 

  21. Liu D, Fu J, Fan H, Li D, Dong E, Xiao X, Wang L, Guo Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol. 2018;12:78–82. https://doi.org/10.1016/J.JBO.2018.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Almog DM, Torrado E, Meitner SW. Fabrication of imaging and surgical guides for dental implants. J Prosthet Dent. 2001;85:504–8. https://doi.org/10.1067/MPR.2001.115388.

    Article  CAS  PubMed  Google Scholar 

  23. Jardini AL, Larosa MA, Macedo MF, Bernardes LF, Lambert CS, Zavaglia CAC, Filho RM, Calderoni DR, Ghizoni E, Kharmandayan P. Improvement in cranioplasty: advanced prosthesis biomanufacturing. Procedia CIRP. 2016;49:203–8. https://doi.org/10.1016/J.PROCIR.2015.11.017.

    Article  Google Scholar 

  24. Vignesh M, Ranjith Kumar G, Sathishkumar M, Manikandan M, Rajyalakshmi G, Ramanujam R, Arivazhagan N. Development of biomedical implants through additive manufacturing: a review. J Mater Eng Perform. 2021;30:4735–44. https://doi.org/10.1007/S11665-021-05578-7/FIGURES/11.

    Article  CAS  Google Scholar 

  25. Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, Alruwaili NK, Alrobaian M, Tarique M, Rahman M. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25:1668–81. https://doi.org/10.1016/J.DRUDIS.2020.07.007.

    Article  CAS  PubMed  Google Scholar 

  26. Choonara YE, Du Toit LC, Kumar P, Kondiah PPD, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 2016;16:23–32. https://doi.org/10.1586/14737167.2016.1138860.

    Article  PubMed  Google Scholar 

  27. Paul CP, Jinoop AN, Bindra KS. Metal additive manufacturing using lasers. Addit Manuf. 2018. https://doi.org/10.1201/B22179-2.

    Article  Google Scholar 

  28. Wasti S, Adhikari S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front Chem. 2020;8:315. https://doi.org/10.3389/FCHEM.2020.00315/BIBTEX.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J, Lee KJ, Kim HJ, Tebon P, Hoffman T, Dokmeci MR, Ashammakhi N, Li X, Khademhosseini A. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. https://doi.org/10.1016/J.MTBIO.2019.100024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia Z, Jin S, Ye K. Tissue and organ 3D bioprinting. SLAS Technol. 2018;23:301–14. https://doi.org/10.1177/2472630318760515/ASSET/IMAGES/LARGE/10.1177_2472630318760515-FIG2.JPEG.

    Article  CAS  PubMed  Google Scholar 

  31. HANDBOOK OF MATERIALS FOR MEDICAL DEVICES, (2003). www.asminternational.orgwww.asminternational.org (Accessed 24 Sept 2022).

  32. Mahajan A, Sidhu SS, Devgan S. Enhancing tribological properties of duplex stainless steel via electrical discharge treatment. Non-Conv Hybrid Mach Process. 2020. https://doi.org/10.1201/9780429029165-9.

    Article  Google Scholar 

  33. Mahajan A, Devgan S, Kalyanasundaram D. Surface alteration of cobalt-chromium and duplex stainless steel alloys for biomedical applications: a concise review. Mater Manuf Process. 2022. https://doi.org/10.1080/10426914.2022.2105873.

    Article  Google Scholar 

  34. Geantǎ V, Voiculescu I, Stefǎnoiu R, Rusu ER. Stainless steels with biocompatible properties for medical devices. Key Eng Mater. 2014;583:9–15. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.583.9.

    Article  Google Scholar 

  35. Xie F, He X, Cao S, Qu X. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering. J Mater Process Technol. 2013;213:838–43. https://doi.org/10.1016/J.JMATPROTEC.2012.12.014.

    Article  CAS  Google Scholar 

  36. Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D-printed PLA–stainless-steel polymeric composite through fused deposition modelling-based additive manufacturing process for biomedical applications. Med Devices Sensors. 2020;3:e10080. https://doi.org/10.1002/MDS3.10080.

    Article  CAS  Google Scholar 

  37. Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med. 2015;9:174–90. https://doi.org/10.1002/TERM.1635.

    Article  CAS  PubMed  Google Scholar 

  38. Qing Y, Li K, Li D, Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Mater Sci Eng C. 2020;108:110430. https://doi.org/10.1016/J.MSEC.2019.110430.

    Article  CAS  Google Scholar 

  39. Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Carvalho O, Silva FS, Miranda G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit Manuf. 2017;16:81–9. https://doi.org/10.1016/J.ADDMA.2017.05.007.

    Article  CAS  Google Scholar 

  40. Lodhi MJK, Deen KM, Greenlee-Wacker MC, Haider W. Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit Manuf. 2019;27:8–19. https://doi.org/10.1016/J.ADDMA.2019.02.005.

    Article  CAS  Google Scholar 

  41. Li J, Qu H, Bai J. Grain boundary engineering during the laser powder bed fusion of TiC/316L stainless steel composites: New mechanism for forming TiC-induced special grain boundaries. Acta Mater. 2022;226:117605. https://doi.org/10.1016/J.ACTAMAT.2021.117605.

    Article  CAS  Google Scholar 

  42. Luo J, Jia X, Gu R, Zhou P, Huang Y, Sun J, Yan M. 316L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating. Metals. 2018;8:548. https://doi.org/10.3390/MET8070548.

    Article  Google Scholar 

  43. Tsutsumi Y, Ishimoto T, Oishi T, Manaka T, Chen P, Ashida M, Doi K, Katayama H, Hanawa T, Nakano T. Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion. Addit Manuf. 2021;45:102066. https://doi.org/10.1016/J.ADDMA.2021.102066.

    Article  CAS  Google Scholar 

  44. Chen L, Richter B, Zhang X, Ren X, Pfefferkorn FE. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit Manuf. 2020;32:101013. https://doi.org/10.1016/J.ADDMA.2019.101013.

    Article  CAS  Google Scholar 

  45. Kopp A, Derra T, Müther M, Jauer L, Schleifenbaum JH, Voshage M, Jung O, Smeets R, Kröger N. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Acta Biomater. 2019;98:23–35. https://doi.org/10.1016/J.ACTBIO.2019.04.012.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Fu P, Wang N, Peng L, Kang B, Zeng H, Yuan G, Ding W. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants. Engineering. 2020;6:1267–75. https://doi.org/10.1016/J.ENG.2020.02.015.

    Article  CAS  Google Scholar 

  47. Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elb Surg. 2003;12:35–9. https://doi.org/10.1067/MSE.2003.22.

    Article  Google Scholar 

  48. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8. https://doi.org/10.1016/J.BIOMATERIALS.2005.07.037.

    Article  CAS  PubMed  Google Scholar 

  49. Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6:1693–7. https://doi.org/10.1016/J.ACTBIO.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  50. Antoniac I, Miculescu M, Mănescu V, Stere A, Quan PH, Păltânea G, Robu A, Earar K. Magnesium-based alloys used in orthopedic surgery. Materials (Basel). 2022;15:1148. https://doi.org/10.3390/MA15031148.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater. 2020;5:44–54. https://doi.org/10.1016/J.BIOACTMAT.2019.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Allavikutty R, Gupta P, Santra TS, Rengaswamy J. Additive manufacturing of Mg alloys for biomedical applications: current status and challenges. Curr Opin Biomed Eng. 2021;18:100276. https://doi.org/10.1016/J.COBME.2021.100276.

    Article  CAS  Google Scholar 

  53. Ng CC, Savalani M, Man HC. Fabrication of magnesium using selective laser melting technique. Rapid Prototyp J. 2011;17:479–90. https://doi.org/10.1108/13552541111184206/FULL/XML.

    Article  Google Scholar 

  54. Ho YH, Joshi SS, Wu TC, Hung CM, Ho NJ, Dahotre NB. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater Sci Eng C. 2020;109:110632. https://doi.org/10.1016/J.MSEC.2020.110632.

    Article  CAS  Google Scholar 

  55. Esmaily M, Zeng Z, Mortazavi AN, Gullino A, Choudhary S, Derra T, Benn F, D’Elia F, Müther M, Thomas S, Huang A, Allanore A, Kopp A, Birbilis N. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting Addit. Manuf. 2020;35:101321. https://doi.org/10.1016/J.ADDMA.2020.101321.

    Article  CAS  Google Scholar 

  56. Liu J, Liu B, Min S, Yin B, Peng B, Yu Z, Wang C, Ma X, Wen P, Tian Y, Zheng Y. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioact Mater. 2022;16:301–19. https://doi.org/10.1016/J.BIOACTMAT.2022.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nilsson Åhman H, D’Elia F, Mellin P, Persson C. Microstructural origins of the corrosion resistance of a Mg-Y-Nd-Zr alloy processed by powder bed fusion—laser beam. Front Bioeng Biotechnol. 2022;10:1184. https://doi.org/10.3389/FBIOE.2022.917812/BIBTEX.

    Article  Google Scholar 

  58. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, Tümer N, Schröder KU, Mol JMC, Weinans H, Jahr H, Zadpoor AA. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–92. https://doi.org/10.1016/J.ACTBIO.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  59. Yin Y, Huang Q, Liang L, Hu X, Liu T, Weng Y, Long T, Liu Y, Li Q, Zhou S, Wu H. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications. J Alloys Compd. 2019;785:38–45. https://doi.org/10.1016/J.JALLCOM.2019.01.165.

    Article  CAS  Google Scholar 

  60. Kuah KX, Blackwood DJ, Ong WK, Salehi M, Seet HL, Nai MLS, Wijesinghe S. Analysis of the corrosion performance of binder jet additive manufactured magnesium alloys for biomedical applications. J Magnes Alloy. 2022;10:1296–310. https://doi.org/10.1016/J.JMA.2021.11.016.

    Article  CAS  Google Scholar 

  61. Dong J, Tümer N, Putra NE, Zhu J, Li Y, Leeflang MA, Taheri P, Fratila-Apachitei LE, Mol JMC, Zadpoor AA, Zhou J. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF2 and MgF2–CaP coatings. Biomater Sci. 2021;9:7159–82. https://doi.org/10.1039/D1BM01238J.

    Article  CAS  PubMed  Google Scholar 

  62. Long T, Zhang X, Huang Q, Liu L, Liu Y, Ren J, Yin Y, Wu D, Wu H. Novel Mg-based alloys by selective laser melting for biomedical applications: microstructure evolution, microhardness and in vitro degradation behavior. Virtual Phys Prototyp. 2017;13:71–81. https://doi.org/10.1080/17452759.2017.1411662.

    Article  Google Scholar 

  63. Mahajan A, Singh G, Devgan S, Sidhu SS. EDM performance characteristics and electrochemical corrosion analysis of Co-Cr alloy and duplex stainless steel: a comparative study. Proc Inst Mech Eng E. 2020;235:812–23. https://doi.org/10.1177/0954408920976739.

    Article  CAS  Google Scholar 

  64. Beake BD, Liskiewicz TW. Comparison of nano-f`retting and nano-scratch tests on biomedical materials. Tribol Int. 2013;63:123–31. https://doi.org/10.1016/J.TRIBOINT.2012.08.007.

    Article  CAS  Google Scholar 

  65. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–86. https://doi.org/10.1007/S11661-002-0109-2.

    Article  Google Scholar 

  66. Hyslop DJS, Abdelkader AM, Cox A, Fray DJ. Electrochemical synthesis of a biomedically important Co–Cr alloy. Acta Mater. 2010;58:3124–30. https://doi.org/10.1016/J.ACTAMAT.2010.01.053.

    Article  CAS  ADS  Google Scholar 

  67. Souza JCM, Mota RRC, Sordi MB, Passoni BB, Benfatti CAM, Magini RS. Biofilm formation on different materials used in oral rehabilitation. Braz Dent J. 2016;27:141–7. https://doi.org/10.1590/0103-6440201600625.

    Article  PubMed  Google Scholar 

  68. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Reports. 2015;87:1–57. https://doi.org/10.1016/J.MSER.2014.10.001.

    Article  Google Scholar 

  69. Giacchi JV, Morando CN, Fornaro O, Palacio HA. Microstructural characterization of as-cast biocompatible Co–Cr–Mo alloys. Mater Charact. 2011;62:53–61. https://doi.org/10.1016/J.MATCHAR.2010.10.011.

    Article  CAS  Google Scholar 

  70. Rosenthal R, Cardoso BR, Bott IS, Paranhos RPR, Carvalho EA. Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy. J Mater Sci. 2010;45(5):4021–8. https://doi.org/10.1007/S10853-010-4480-X.

    Article  CAS  ADS  Google Scholar 

  71. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L, Gatto A, Iuliano L, Moskalewicz T, Mengucci P. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Sci Eng C Mater Biol Appl. 2015;48:263–9. https://doi.org/10.1016/J.MSEC.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  72. Sun SH, Koizumi Y, Kurosu S, Li YP, Matsumoto H, Chiba A. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater. 2014;64:154–68. https://doi.org/10.1016/J.ACTAMAT.2013.10.017.

    Article  CAS  ADS  Google Scholar 

  73. Haan J, Asseln M, Zivcec M, Eschweiler J, Radermacher R, Broeckmann C. Effect of subsequent hot isostatic pressing on mechanical properties of ASTM F75 alloy produced by selective laser melting. Powder Metall. 2015;58:161–5. https://doi.org/10.1179/0032589915Z.000000000236.

    Article  CAS  ADS  Google Scholar 

  74. Mantrala KM, Das M, Balla VK, Srinivasa Rao C, Kesava Rao VVS. Laser-deposited CoCrMo alloy: microstructure, wear, and electrochemical properties. J Mater Res. 2014;29(17):2021–7. https://doi.org/10.1557/JMR.2014.163.

    Article  CAS  ADS  Google Scholar 

  75. Isik M, Avila JD, Bandyopadhyay A. Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants. Addit Manuf. 2020;36:101553. https://doi.org/10.1016/J.ADDMA.2020.101553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sahasrabudhe H, Bose S, Bandyopadhyay A. Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation. Acta Biomater. 2018;66:118–28. https://doi.org/10.1016/J.ACTBIO.2017.11.022.

    Article  CAS  PubMed  Google Scholar 

  77. Iatecola A, Longhitano GA, Antunes LHM, Jardini AL, de Castro Miguel E, Béreš M, Lambert CS, Andrade TN, Buchaim RL, Buchaim DV, Pomini KT, Dias JA, Spressão DRMS, Felix M, Cardoso GBC, da Cunha MR. Osseointegration improvement of Co-Cr-Mo alloy produced by additive manufacturing. Pharmaceutics. 2021;13:724. https://doi.org/10.3390/PHARMACEUTICS13050724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stenlund P, Kurosu S, Koizumi Y, Suska F, Matsumoto H, Chiba A, Palmquist A. Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Addit Manuf. 2015;6:6–15. https://doi.org/10.1016/J.ADDMA.2015.02.002.

    Article  CAS  Google Scholar 

  79. Sidambe AT. Effects of build orientation on 3D-printed Co-Cr-Mo: surface topography and L929 fibroblast cellular response. Int J Adv Manuf Technol. 2018;99(1):867–80. https://doi.org/10.1007/S00170-018-2473-0.

    Article  Google Scholar 

  80. W. Toh, X. Tan, Z. Sun, E. Liu, S. Tor, C. Chua, Comparative Study on Tribological Behavior of Ti-6Al-4V and Co-Cr-Mo Samples Additively Manufactured with Electron Beam Melting, Undefined. (2016).

  81. Caravaggi P, Liverani E, Leardini A, Fortunato A, Belvedere C, Baruffaldi F, Fini M, Parrilli A, Mattioli-Belmonte M, Tomesani L, Pagani S. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: topographical, mechanical, and biological characterization. J Biomed Mater Res B Appl Biomater. 2019;107:2343–53. https://doi.org/10.1002/JBM.B.34328.

    Article  CAS  PubMed  Google Scholar 

  82. Amanov A. Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surf Coatings Technol. 2021;421:127378. https://doi.org/10.1016/J.SURFCOAT.2021.127378.

    Article  CAS  Google Scholar 

  83. Devgan S, Mahajan A, Sidhu SS. Multi-walled carbon nanotubes in powder mixed electrical discharge machining: an experimental study, state of the art and feasibility prospect. Appl Phys A. 2021;127(11):1–15. https://doi.org/10.1007/S00339-021-04934-7.

    Article  Google Scholar 

  84. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci. 2009;54:397–425. https://doi.org/10.1016/J.PMATSCI.2008.06.004.

    Article  CAS  Google Scholar 

  85. Uçar U, Balo F. Determining of the convenient metal dental implant material in terms of strength properties. Org Med Chem Int J. 2018;6:41–3. https://doi.org/10.19080/OMCIJ.2018.06.555683.

    Article  Google Scholar 

  86. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16:57–67. https://doi.org/10.5301/JABFM.5000371/ASSET/IMAGES/LARGE/10.5301_JABFM.5000371-FIG2.JPEG.

    Article  CAS  PubMed  Google Scholar 

  87. Bhui AS, Singh G, Sidhu SS, Bains PS. Experimental investigation of MWCNTs mixed EDM of Ti-6Al-4V surface. Int J Precis Technol. 2020;9:56. https://doi.org/10.1504/IJPTECH.2020.109778.

    Article  Google Scholar 

  88. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–92. https://doi.org/10.1016/J.ACTAMAT.2016.07.019.

    Article  CAS  ADS  Google Scholar 

  89. Devgan S, Mahajan A, Singh G, Singh G, Sidhu SS. Surface integrity of powder mixed electrical discharge treated substrate at high discharge energies. Lect Notes Mech Eng. 2022. https://doi.org/10.1007/978-981-16-2278-6_18/COVER.

    Article  Google Scholar 

  90. Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng C Methods. 2009;15:115–24. https://doi.org/10.1089/TEN.TEC.2008.0288.

    Article  CAS  Google Scholar 

  91. Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, Hao YL, Zhang ZY, Guo Z. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 2013;37:E191–201. https://doi.org/10.1111/AOR.12153.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65:21–4. https://doi.org/10.1016/J.SCRIPTAMAT.2011.03.024.

    Article  CAS  Google Scholar 

  93. Luo JP, Huang YJ, Xu JY, Sun JF, Dargusch MS, Hou CH, Ren L, Wang RZ, Ebel T, Yan M. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young’s modulus: mechanical property, biocompatibility, and proteomics analysis. Mater Sci Eng C. 2020;114:110903. https://doi.org/10.1016/J.MSEC.2020.110903.

    Article  CAS  Google Scholar 

  94. Liang H, Zhao D, Feng X, Ma L, Deng X, Han C, Wei Q, Yang C. 3D-printed porous titanium scaffolds incorporating niobium for high bone regeneration capacity. Mater Des. 2020;194:108890. https://doi.org/10.1016/J.MATDES.2020.108890.

    Article  CAS  Google Scholar 

  95. Yu M, Wan Y, Ren B, Wang H, Zhang X, Qiu C, Liu A, Liu Z. 3D printed Ti-6Al-4V implant with a micro/nanostructured surface and its cellular responses. ACS Omega. 2020;5:31738–43. https://doi.org/10.1021/ACSOMEGA.0C04373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Attar H, Bermingham MJ, Ehtemam-Haghighi S, Dehghan-Manshadi A, Kent D, Dargusch MS. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater Sci Eng A. 2019;760:339–45. https://doi.org/10.1016/J.MSEA.2019.06.024.

    Article  CAS  Google Scholar 

  97. Bhardwaj T, Shukla M, Prasad NK, Paul CP, Bindra KS. Direct laser deposition-additive manufacturing of Ti–15Mo alloy: effect of build orientation induced surface topography on corrosion and bioactivity. Metals Mater Int. 2019;26(7):1015–29. https://doi.org/10.1007/S12540-019-00464-3.

    Article  Google Scholar 

  98. Balasubramanian Gayathri YK, Kumar RL, Ramalingam VV, Priyadharshini GS, Kumar KS, Prabhu TR. Additive manufacturing of Ti-6Al-4V alloy for biomedical applications. J Bio- Tribo-Corros. 2022;8(4):1–20. https://doi.org/10.1007/S40735-022-00700-1.

    Article  Google Scholar 

  99. Santos PB, de Castro VV, Baldin EK, Aguzzoli C, Longhitano GA, Jardini AL, Lopes ÉSN, de Andrade AMH, de Fraga Malfatti C. Wear resistance of plasma electrolytic oxidation coatings on Ti-6Al-4V eli alloy processed by additive manufacturing. Metals. 2022;12:1070. https://doi.org/10.3390/MET12071070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mahajan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, A., Singh, G. & Devgan, S. Additive manufacturing of metallic biomaterials: a concise review. Archiv.Civ.Mech.Eng 23, 187 (2023). https://doi.org/10.1007/s43452-023-00730-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00730-7

Keywords

Navigation