Skip to main content
Log in

Bonding of graphite to Cu with metal multi-foils

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Graphite/Cu bonding is essential for the fabrication of graphite-based plasma-facing parts and graphite-type commutators. Transient liquid phase bonding of graphite/Cu has been conducted separately with Ti/Cu/Ti and Ti/Cu/Ni/Ti multi-foils. The interfacial microstructure and mechanical properties of the bonded joints have been characterized. For the joint with Ti/Cu/Ti multi-foils, complete melting of the Ti/Cu/Ti multi-foils and interdiffusion between the molten zone and the Cu substrate occur during the bonding process, leading to formation of Ti–Cu intermetallics in the bonding area. The liquid phase flowing toward the sidewall of the Cu substrate gives rise to a thickness of the bonding area far less than those of the as-received multi-foils. For the joint with Ti/Cu/Ni/Ti multi-foils, the bonding area can be divided into three parts (areas I, II and III). The bonding areas I and III comprise Ti–Cu intermetallics and Ti(CuxNi1-x)2, while the bonding area II consists of an Ni layer and two thin TiNi3 reaction layers. The thickness of the whole bonding area is similar to those of the as-received multi-foils, indicating that addition of Ni foil can prevent the loss of liquid phase zone by inhibiting the excessive liquid phase formation. The addition of a Ni foil in bonding of the graphite/Cu may alleviate the joint residual stress by its intermediate coefficient of thermal expansion (CTE) to accommodate any thermal mismatch in the joint and by its superior ductility and plasticity, thus resulting in shear strength promotion of the joint with the Ti/Cu/Ni/Ti multi-foils by approximately 35% when compared to the Ti/Cu/Ti multi-foils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data during the study are available from the corresponding author by request.

Code availability

Not applicable.

References

  1. Diop S, Rigaud E, Cornuault PH, Grandais-Menant E, Bazin B. Experimental analysis of the vibroacoustic response of an electric window-lift gear motor generated by the contact between carbon brushes and commutators. J Vib Acoust Trans ASME. 2017;139(6):061002. https://doi.org/10.1115/1.4036869.

    Article  Google Scholar 

  2. Zhang LX, Zhang B, Sun Z, Tian XY, Lei M, Feng JC. Preparation of the graphene nanosheets reinforced AgCuTi based composite for brazing graphite and Cu. J Alloys Compd. 2019;782:981–5. https://doi.org/10.1016/j.jallcom.2018.11.407.

    Article  CAS  Google Scholar 

  3. Li C, Si XQ, Cao J, Qi JL, Dong ZB, Feng JC. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction. J Mater Sci Technol. 2019;32:2470–6. https://doi.org/10.1016/j.jmst.2019.07.023.

    Article  CAS  Google Scholar 

  4. Zhang J, Wang TP, Liu CF, He YM. Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Mater Sci Eng A. 2014;594:26–31. https://doi.org/10.1016/j.msea.2013.11.059.

    Article  CAS  Google Scholar 

  5. Mao YW, Wang S, Peng LX, Deng QR, Zhao P, Guo BB, Zhang YZ. Brazing of graphite to Cu with Cu50TiH2+C composite filler. J Mater Sci. 2016;51(4):1671–9. https://doi.org/10.1007/s10853-015-9415-0.

    Article  ADS  CAS  Google Scholar 

  6. Mao YW, Yu S, Zhang YZ, Guo BB, Ma ZB, Deng QR. Microstructure analysis of graphite/Cu joints brazed with (Cu–50TiH2)+ B composite filler. Fusion Eng Des. 2015;100:152–8. https://doi.org/10.1016/j.fusengdes.2015.05.011.

    Article  CAS  Google Scholar 

  7. Jiang QY, Wang YJ, Xu HM, Ma XJ, Wang SG, Mao YW. Transient liquid phase bonding of graphite to Ti6Al4V alloy. Sci Technol Weld Joining. 2022;27(8):615–20. https://doi.org/10.1080/13621718.2022.2095195.

    Article  CAS  Google Scholar 

  8. Lin JC, Huang M, Yang WQ, Xing LL. Degradation kinetics of Ti–Cu compound layer in transient liquid phase bonded graphite/copper joints. Sci Rep. 2018;8(1):1–11. https://doi.org/10.1038/s41598-018-33446-3.

    Article  ADS  CAS  Google Scholar 

  9. Kang YH, Feng KM, Zhang WT, Mao YW. Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag-Cu–Ti and refractory metal foils. Arch Civ Mech Eng. 2021;21(3):113. https://doi.org/10.1007/s43452-021-00268-6.

    Article  Google Scholar 

  10. Gao YA, Huang LJ, Bao Y, An Q, Sun Y, Zhang R, Geng L, Zhang J. Joints of TiBw/Ti6Al4V composites- Inconel 718 alloys dissimilar joining using Nb and Cu interlayers. J Alloys Compd. 2020;822:153559. https://doi.org/10.1016/j.jallcom.2019.153559.

    Article  CAS  Google Scholar 

  11. Hao ZT, Wang DP, Yang ZW, Wang Y. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag-Cu–Zn and Ag-Cu-Zn/Cu/Ag-Cu-Ti filler metals. Arch Civ Mech Eng. 2019;19(4):1083–94. https://doi.org/10.1016/j.acme.2019.04.008.

    Article  Google Scholar 

  12. Xing LL, Lin JC, Huang M, Yang WQ. Joining of graphite to copper with Nb Interlayer: microstructure and mechanical properties. Adv Eng Mater. 2019;21(2):1800810. https://doi.org/10.1002/adem.201800810.

    Article  CAS  Google Scholar 

  13. Duan Y, Mao YW, Xu ZM, Deng QR, Wang GM, Wang SG. Joining of graphite to Ti6Al4V alloy using Cu-based fillers. Adv Eng Mater. 2019;21(11):1900719. https://doi.org/10.1002/adem.201900719.

    Article  CAS  Google Scholar 

  14. Norouzi E, Shamanian M, Atapour M, Khosravi B. Diffusion brazing of Ti–6Al–4V and AISI 304: an EBSD study and mechanical properties. J Mater Sci. 2017;52(20):12467–75. https://doi.org/10.1007/s10853-017-1376-z.

    Article  ADS  CAS  Google Scholar 

  15. Elrefaey A, Tillmann W. Evaluation of transient liquid phase bonding between titanium and steel. Adv Eng Mater. 2009;11(7):556–60. https://doi.org/10.1002/adem.200900021.

    Article  CAS  Google Scholar 

  16. Vidyuk TM, Dudina DV, Esikov MA, Mali VI, Anisimov AG, Bokhonov BB, Batraev IS. Pulsed current-assisted joining of copper to graphite using Ti–Cu brazing layers. Mater Today Proc. 2020;25:377–80. https://doi.org/10.1016/j.matpr.2019.12.095.

    Article  CAS  Google Scholar 

  17. Wei YN, Niu R, Guo HL, Luo YG, Zou JT. Microstructure and performance of graphite/copper joints by brazing with different interfacial structures. Adv Eng Mater. 2022;24(5):2101161. https://doi.org/10.1002/adem.202101161.

    Article  CAS  Google Scholar 

  18. Okamoto H, Schlesinger ME, Mueller EM. ASM Handbook Volume 3: Alloy Phase Diagrams. Ohio(OH): ASM International; 2016

  19. Mao YW, Peng LX, Wang S, Xi LX. Microstructural characterization of graphite/CuCrZr joints brazed with CuTiH2Ni-based fillers. J Alloys Compd. 2017;716:81–7. https://doi.org/10.1016/j.jallcom.2017.05.019.

    Article  CAS  Google Scholar 

  20. Buenconsejo PJS, Zarnetta R, König D, Savan A, Thienhaus S, Ludwig A. A new prototype two-phase (TiNi)-(β-W) SMA system with tailorable thermal hysteresis. Adv Funct Mater. 2011;21(1):113–8. https://doi.org/10.1002/adfm.201001697.

    Article  CAS  Google Scholar 

  21. Watanabe M, Adachi M, Fukuyama H. Density measurement of Ti–X (X= Cu, Ni) melts and thermodynamic correlations. J Mater Sci. 2019;54(5):4306–13. https://doi.org/10.1007/s10853-018-3098-2.

    Article  ADS  CAS  Google Scholar 

  22. Arroyave R, Eagar TW. Metal substrate effects on the thermochemistry of active brazing interfaces. Acta Mater. 2003;51(16):4871–80. https://doi.org/10.1016/S1359-6454(03)00330-6.

    Article  ADS  CAS  Google Scholar 

  23. Konieczny M. Processing and microstructural characterisation of laminated Ti-intermetallic composites synthesised using Ti and Cu foils. Mater Lett. 2018;62(17–18):2600–2. https://doi.org/10.1016/j.matlet.2007.12.067.

    Article  CAS  Google Scholar 

  24. Xiong JT, Peng Y, Zhang H, Li JL, Zhang FS. Microstructure and mechanical properties of Al-Cu joints diffusion-bonded with Ni or Ag interlayer. Vacuum. 2018;147:187–93. https://doi.org/10.1016/j.vacuum.2017.10.033.

    Article  ADS  CAS  Google Scholar 

  25. Hao XH, Dong HG, Li S, Xu XX, Peng L. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire. J Mater Process Technol. 2018;257:88–100. https://doi.org/10.1016/j.jmatprotec.2018.02.020.

    Article  CAS  Google Scholar 

  26. Dai J, Yu B, Ruan Q, Ruan QD, Chu PK. Improvement of the laser-welded lap joint of dissimilar Mg alloy and Cu by incorporation of a Zn interlayer. Mater. 2020;13(9):2053. https://doi.org/10.3390/ma13092053.

    Article  CAS  Google Scholar 

  27. Zhong Z, Hinoki T, Kohyama A. Joining of silicon carbide to ferritic stainless steel using a W-Pd-Ni interlayer for high-temperature applications. Int J Appl Ceram Technol. 2010;7(3):338–47. https://doi.org/10.1111/j.1744-7402.2009.02461.x.

    Article  CAS  Google Scholar 

  28. Hynes NRJ, Velu PS, Raja MK, Jebaraj DJJ, Benita B. Simulation on graphite to copper joints in nuclear reactor applications by transient liquid phase bonding. Mater Today Proc. 2021;47:7095–8. https://doi.org/10.1016/j.matpr.2021.06.209.

    Article  CAS  Google Scholar 

  29. Zhong Z, Zhou Z, Ge C. Brazing of doped graphite to Cu using stress relief interlayers. J Mater Process Technol. 2009;209(5):2662–70. https://doi.org/10.1016/j.jmatprotec.2008.06.021.

    Article  CAS  Google Scholar 

  30. Gianchandani PK, Casalegno V, Smeacetto F, Ferraris M. Pressure-less joining of C/SiC and SiC/SiC by a MoSi2/Si composite. Int J Appl Ceram Technol. 2017;14(3):305–12. https://doi.org/10.1111/ijac.12631.

    Article  CAS  Google Scholar 

  31. Ba J, Ji X, Wang B, Li PX, Lin JH, Qi JL, Cao J. In-situ alloying of BNi2+Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy. J Manuf Process. 2021;67:52–5. https://doi.org/10.1016/j.jmapro.2021.04.061.

    Article  Google Scholar 

  32. Chen HS, Long CS, Wei TG, Gao W, Xiao HX, Che L. Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 stainless steel. Mater Des. 2014;60:358–62. https://doi.org/10.1016/j.matdes.2014.03.055.

    Article  CAS  Google Scholar 

  33. Niu JB, Wang Y, Yang ZW, Wang DP. Microstructure and mechanical properties of titanium–zirconium–molybdenum and Ti2AlNb joint diffusion bonded with and without a Ni interlayer. Adv Eng Mater. 2019;21(11):1900713. https://doi.org/10.1002/adem.201900713.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51304148) and the WIT Graduate Education Innovation Fund (Grant No. CX2021164).

Author information

Authors and Affiliations

Authors

Contributions

YC: investigation, methodology, writing—original draft. BX: investigation, data curation, writing—original draft. XM: validation. JH: writing—review and editing. YM: conceptualization, resources, supervision, writing—review and editing. SW: resources, supervision.

Corresponding authors

Correspondence to Yangwu Mao or Shenggao Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Xu, B., Ma, X. et al. Bonding of graphite to Cu with metal multi-foils. Archiv.Civ.Mech.Eng 23, 58 (2023). https://doi.org/10.1007/s43452-023-00603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00603-z

Keywords

Navigation