Skip to main content

Advertisement

Log in

Investigation of the mechanical and hygrothermal behavior of coffee ground wastes valorized as a building material: analysis of mix designs performance and sorption curve linearization effect

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Coffee ground wastes (CGW) are by-products from the coffee-making processes. In this study, we propose to valorize them in construction materials at large scale. In particular, we investigate the mechanical and hygrothermal performances of earthen cob construction with incorporation of various amounts of CGW. Our results indicate that adding coffee grounds to cob enhances its hygrothermal performances as well as its compressive strength. An interesting enhancement of the lightened earth thermal characteristics as well as a good control of the hydric load in the air while maintaining acceptable mechanical properties is observed. Numerical analysis is used to evaluate the hygrothermal behavior of cob specimens to better understand their energy performances. A simplification of the simulation methods using a linearization of the sorption curve is incorporated to reduce calculation times and optimize outputs. The method is validated using experimental data, which shows a promising improvement compared to previous approaches. The proposed method can be faithfully applied to the study of hygrothermal behavior of biomaterials, which is strongly related to the building energy performance and the investigation of their durability in a fast and efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data are available. Author declared that all data and materials as well as software application support his published claims and comply with field standards.

References

  1. Esfanjary Kenari E. Persian historic urban landscapes interpreting and managing Maibud over 6000 years. Edinburgh University Press; 2017.

    Book  Google Scholar 

  2. Bouasria M, El Mendili Y, Benzaama M-H, Pralong V, Bardeau J-F, Hennequart F. Valorisation of stranded laminaria digitata seaweed as an insulating earth material. Constr Build Mater. 2021;308: 125068. https://doi.org/10.1016/j.conbuildmat.2021.125068.

    Article  Google Scholar 

  3. Riffat MASB. Building energy consumption and carbon dioxide emissions: threat to climate change. J Earth Sci Clim Change. 2015. https://doi.org/10.4172/2157-7617.S3-001.

    Article  Google Scholar 

  4. Lekshmi MS, Vishnudas S, Nair DG. An investigation on the potential of mud as sustainable building material in the context of Kerala. Int J Energy Technol Policy. 2017;13(1–2):107–22. https://doi.org/10.1504/IJETP.2017.080621.

    Article  Google Scholar 

  5. El Mendili Y, et al. Mud-based construction material: promising properties of French gravel wash mud mixed with byproducts, seashells and fly ash as a binder. Materials. 2021;14(20):20. https://doi.org/10.3390/ma14206216.

    Article  CAS  Google Scholar 

  6. Miccoli L, Müller U, Fontana P. Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob. Constr Build Mater. 2014;61:327–39. https://doi.org/10.1016/j.conbuildmat.2014.03.009.

    Article  Google Scholar 

  7. Bekhiti M, Trouzine H, Rabehi M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Constr Build Mater. 2019;208:304–13. https://doi.org/10.1016/j.conbuildmat.2019.03.011.

    Article  CAS  Google Scholar 

  8. Chang I, et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp Geotech. 2020;24: 100385. https://doi.org/10.1016/j.trgeo.2020.100385.

    Article  Google Scholar 

  9. Chang I, Im J, Cho G-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability. 2016;8(3):3. https://doi.org/10.3390/su8030251.

    Article  Google Scholar 

  10. Ben-Hur M, Malik M, Letey J, Mingelgrin U. Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water quality. Soil Sci. 1992. https://doi.org/10.1097/00010694-199205000-00002.

    Article  Google Scholar 

  11. Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira Mendonça R. A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability. 2021;13(5):5. https://doi.org/10.3390/su13052697.

    Article  CAS  Google Scholar 

  12. Cerino-Córdova FJ, Dávila-Guzmán NE, García León AM, Salazar-Rabago JJ, Soto-Regalado E. Revalorization of coffee waste. In: Toledo Castanheira D, editor. Coffee - production and research. IntechOpen; 2020. p. 5–10.

    Google Scholar 

  13. Levy D, Reinecke J, Manning S. The political dynamics of sustainable coffee: contested value regimes and the transformation of sustainability. J Manag Stud. 2016;53(3):364–401. https://doi.org/10.1111/joms.12144.

    Article  Google Scholar 

  14. International Coffee Organization - What’s New. https://www.ico.org/. Accessed 13 Feb 2022

  15. Mata TM, Martins AA, Caetano NS. Bio-refinery approach for spent coffee grounds valorization. Bioresour Technol. 2018;247:1077–84. https://doi.org/10.1016/j.biortech.2017.09.106.

    Article  CAS  PubMed  Google Scholar 

  16. Pujol D, et al. The chemical composition of exhausted coffee waste. Ind Crops Prod. 2013;50:423–9. https://doi.org/10.1016/j.indcrop.2013.07.056.

    Article  CAS  Google Scholar 

  17. Mussatto SI, Machado EMS, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011;4(5):661. https://doi.org/10.1007/s11947-011-0565-z.

    Article  CAS  Google Scholar 

  18. Abahri K, Belarbi R, Oudjehani N, Issaadi N, Ferroukhi M. Total pressure gradient incidence on hygrothermal transfer in highly porous building materials. Adv Mater Res. 2013;772:124–9. https://doi.org/10.4028/www.scientific.net/AMR.772.124.

    Article  Google Scholar 

  19. Ferroukhi MY, Djedjig R, Limam K, Belarbi R. Hygrothermal behavior modeling of the hygroscopic envelopes of buildings: a dynamic co-simulation approach. Build Simul. 2016;9(5):501–12. https://doi.org/10.1007/s12273-016-0292-5.

    Article  Google Scholar 

  20. Slimani Z, Trabelsi A, Virgone J, Zanetti Freire R. Study of the hygrothermal behavior of wood fiber insulation subjected to non-isothermal loading. Appl Sci. 2019;9(11):11. https://doi.org/10.3390/app9112359.

    Article  CAS  Google Scholar 

  21. Alioua T, Agoudjil B, Chennouf N, Boudenne A, Benzarti K. Investigation on heat and moisture transfer in bio-based building wall with consideration of the hysteresis effect. Build Environ. 2019;163: 106333. https://doi.org/10.1016/j.buildenv.2019.106333.

    Article  Google Scholar 

  22. Hamdaoui M-A, Benzaama M-H, El Mendili Y, Chateigner D. A review on physical and data-driven modeling of buildings hygrothermal behavior: models, approaches and simulation tools. Energy Build. 2021;251: 111343. https://doi.org/10.1016/j.enbuild.2021.111343.

    Article  Google Scholar 

  23. Zhang Z, Thiery M, Baroghel-Bouny V. A review and statistical study of existing hysteresis models for cementitious materials. Cem Concr Res. 2014;57:44. https://doi.org/10.1016/j.cemconres.2013.12.008.

    Article  CAS  Google Scholar 

  24. Mualem Y. Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour Res. 1973;9(5):1324–31. https://doi.org/10.1029/WR009i005p01324.

    Article  ADS  Google Scholar 

  25. Mualem Y. A conceptual model of hysteresis. Water Resour Res. 1974;10(3):3. https://doi.org/10.1029/WR010i003p00514.

    Article  Google Scholar 

  26. Promis G, Douzane O, Le Tran AD, Langlet T. Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state. Energy Build. 2018;166:450–9. https://doi.org/10.1016/j.enbuild.2018.01.067.

    Article  Google Scholar 

  27. Lelievre D, Colinart T, Glouannec P. Hygrothermal behavior of bio-based building materials including hysteresis effects: experimental and numerical analyses. Energy Build. 2014;84:617–27. https://doi.org/10.1016/j.enbuild.2014.09.013.

    Article  Google Scholar 

  28. Zhang X, Chen B, Riaz Ahmad M. Characterization of a novel bio-insulation material for multilayer wall and research on hysteresis effect. Constr Build Mater. 2021;290:123162. https://doi.org/10.1016/j.conbuildmat.2021.123162.

    Article  CAS  Google Scholar 

  29. Patera A, Derluyn H, Derome D, Carmeliet J. Influence of sorption hysteresis on moisture transport in wood. Wood Sci Technol. 2016;50(2):259–83. https://doi.org/10.1007/s00226-015-0786-9.

    Article  CAS  Google Scholar 

  30. Volhard F. Light earth building: a handbook for building with wood and earth. Walter de Gruyter GmbH; 2016.

    Book  Google Scholar 

  31. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass. Biomass Anal Technol Team Lab Anal Proced. 2004;2011:1–14.

    Google Scholar 

  32. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep Purif Technol. 2011;83:173–9. https://doi.org/10.1016/j.seppur.2011.09.036.

    Article  CAS  Google Scholar 

  33. Grembecka M, Malinowska E, Szefer P. Differentiation of market coffee and its infusions in view of their mineral composition. Sci Total Environ. 2007;383:59–69. https://doi.org/10.1016/j.scitotenv.2007.04.031.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Köbbing J, Thevs N, Zerbe S, Wichtmann W, Couwenberg J. The utilisation of reed (Phragmites australis): a review,” undefined, 2013. [Online]. Available: https://www.semanticscholar.org/paper/The-utilisation-of-reed-(Phragmites-australis)%3A-a-K%C3%B6bbing-Thevs/307c5503de54c11cdbd325f1f28491b561cc75eb. Accessed 15 Feb 2022.

  35. Gražulis S, et al. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012;40:420–7. https://doi.org/10.1093/nar/gkr900.

    Article  CAS  Google Scholar 

  36. Lutterotti L, Matthies S, Wenk H-R, Schultz AS, Richardson JW. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81(2):594–600. https://doi.org/10.1063/1.364220.

    Article  ADS  CAS  Google Scholar 

  37. El Mendili Y, et al. Combined XRF, XRD, SEM-EDS, and Raman analyses on serpentinized harzburgite (Nickel Laterite Mine, New Caledonia): implications for exploration and geometallurgy. ACS Earth Space Chem. 2019;3:2237–49. https://doi.org/10.1021/acsearthspacechem.9b00014.

    Article  ADS  CAS  Google Scholar 

  38. Meinhold G. Rutile and its applications in earth sciences. Earth-Sci Rev. 2010;102(1):1–28. https://doi.org/10.1016/j.earscirev.2010.06.001.

    Article  ADS  CAS  Google Scholar 

  39. Stanienda KJ. Carbonate phases rich in magnesium in the Triassic limestones of the eastern part of the Germanic Basin. Carbonates Evaporites. 2016;31(4):387–405. https://doi.org/10.1007/s13146-016-0297-2.

    Article  CAS  Google Scholar 

  40. Andrade FA, Al-Qureshi HA, Hotza D. Measuring the plasticity of clays: a review. Appl Clay Sci. 2011;51(1):1–7. https://doi.org/10.1016/j.clay.2010.10.028.

    Article  CAS  Google Scholar 

  41. Hillel D. Soil physical attributes. In: Hillel D, editor. Soil in the environment. San Diego: Academic Press; 2008. p. 55–77.

    Chapter  Google Scholar 

  42. Miranda-Trevino JC, Coles CA. Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci. 2003;23(1):133–9. https://doi.org/10.1016/S0169-1317(03)00095-4.

    Article  CAS  Google Scholar 

  43. NF EN ISO 12572. Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-12572/performance-hygrothermique-des-materiaux-et-produits-pour-le-batiment-deter/fa184538/57928. Accessed 27 Jul 2022

  44. NF ISO 5017. Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-iso-5017/produits-refractaires-faconnes-denses-determination-de-la-masse-volumique-a/fa169530/41164. Accessed 27 Jul 2022

  45. NF EN ISO 11357-4. Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-113574/plastiques-analyse-calorimetrique-differentielle-dsc-partie-4-determination/fa199556/238238. Accessed 27 Jul 2022

  46. NF EN ISO 12571. Afnor EDITIONS. https://m.boutique.afnor.org/fr-fr/norme/nf-en-iso-12571/performance-hygrothermique-des-materiaux-et-produits-pour-le-batiment-deter/fa177734/42249. Accessed 27 Jul 2022

  47. Andrade R, Pérez C. Models of sorption isotherms for food: uses and limitations. Vitae Rev Fac Quimica Farm. 2011;18:325–34.

    Google Scholar 

  48. Moodley P, Trois C. Lignocellulosic biorefineries: the path forward. In: Ray RC, editor. Sustainable biofuels. Academic Press; 2021. p. 21–42.

    Chapter  Google Scholar 

  49. Glasser WG, Barnett CA, Sano Y. Classification of lignins with different genetic and industrial origins. J Appl Polym Sci Appl Polym Symp U. S. Art. no. CONF-8205234-Vol.1, Jan. 1983. [Online]. Available: https://www.osti.gov/biblio/7146700-classification-lignins-different-genetic-industrial-origins. Accessed 27 Feb 2022

  50. Sena da Fonseca B, Vilão A, Galhano C, Simão JAR. Reusing coffee waste in manufacture of ceramics for construction. Adv Appl Ceram. 2014;113(3):159–66. https://doi.org/10.1179/1743676113Y.0000000131.

    Article  CAS  Google Scholar 

  51. Eliche-Quesada D, et al. The use of different forms of waste in the manufacture of ceramic bricks. Appl Clay Sci. 2011;52:270–6. https://doi.org/10.1016/j.clay.2011.03.003.

    Article  CAS  Google Scholar 

  52. Künzel HM. Simultaneous heat and moisture transport in building components: one- and two-dimensional calculation using simple parameters. Stuttgart: IRB-Verl; 1995.

    Google Scholar 

  53. Maaroufi M. Experimental and numerical highlighting of water vapor sorption hysteresis in the coupled heat and moisture transfers. J Build Eng. 2021;40:102321.

    Article  Google Scholar 

  54. Rémond R, Almeida G, Perré P. The gripped-box model: a simple and robust formulation of sorption hysteresis for lignocellulosic materials. Constr Build Mater. 2018;170:716–24. https://doi.org/10.1016/j.conbuildmat.2018.02.116.

    Article  CAS  Google Scholar 

  55. Zhang Z. Modelling of sorption hysteresis and its effect on moisture transport within cementitious materials. p. 237.

  56. Huang H-C, Tan Y-C, Liu C-W, Chen C-H. A novel hysteresis model in unsaturated soil. Hydrol Process. 2005;19(8):1653–65. https://doi.org/10.1002/hyp.5594.

    Article  ADS  Google Scholar 

  57. Haba B, Agoudjil B, Boudenne A, Benzarti K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr Build Mater. 2017;154:963–71. https://doi.org/10.1016/j.conbuildmat.2017.08.025.

    Article  Google Scholar 

  58. Benmansour N, Agoudjil B, Gherabli A, Kareche A, Boudenne A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014;81:98–104. https://doi.org/10.1016/j.enbuild.2014.05.032.

    Article  Google Scholar 

  59. Chennouf N, Agoudjil B, Alioua T, Boudenne A, Benzarti K. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy Build. 2019;202: 109413. https://doi.org/10.1016/j.enbuild.2019.109413.

    Article  Google Scholar 

  60. Mendes N, Philippi PC, Lamberts R. A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media. Int J Heat Mass Transf. 2002;45(3):509–18. https://doi.org/10.1016/S0017-9310(01)00172-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is associated with the French DD&RS strategy (Sustainable Development and Social Responsibility).

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M-AH, M-HB, YE; Methodology: M-AH, M-HB, YE; Formal analysis and investigation: M-AH, M-HB, YE, DC, SG; Writing—original draft preparation: M-AH, M-HB, YE; Writing—review and editing: M-AH, M-HB, YE, DC; Supervision: M-HB, DC, YE.

Corresponding author

Correspondence to Yassine El Mendili.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Research involving human participants and/or animals

Not applicable.

Consent for publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Annex 1
scheme 1

Moisture sorption isotherm linearized of Date Palm Concrete (DPC) [21] (Refitted and modified from original)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdaoui, M.A., Benzaama, MH., El Mendili, Y. et al. Investigation of the mechanical and hygrothermal behavior of coffee ground wastes valorized as a building material: analysis of mix designs performance and sorption curve linearization effect. Archiv.Civ.Mech.Eng 23, 57 (2023). https://doi.org/10.1007/s43452-022-00579-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00579-2

Keywords

Navigation