Skip to main content

Advertisement

Log in

Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Neurodegeneration is a condition of the central nervous system (CNS) characterized by loss of neural structures and function. The most common neurodegenerative disorders (NDDs) include Alzheimer's disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), multiple sclerosis (MS), motor neuron disorders, psychological disorders, dementia with vascular dementia (VaD), Lewy body dementia (DLB), epilepsy, cerebral ischemia, mental illness, and behavioral disorders. CREB (cAMP-response element-binding protein) represent a nuclear protein that regulates gene transcriptional activity. The primary focus of the review pertains to the exploration of CREB expression and activation within the context of neurodegenerative diseases, specifically in relation to the phosphorylation and dephosphorylation events that occur within the CREB signaling pathway under normal physiological conditions. The findings mentioned have contributed to the elucidation of the regulatory mechanisms governing CREB activity. Additionally, they have provided valuable insights into the potential mediation of diverse biological processes, such as memory consolidation and neuroprotective effects, by various related studies. The promotion of synaptic plasticity and neurodevelopment in the central nervous system through the targeting of CREB proteins has the potential to contribute to the prevention or delay of the onset of neurodegenerative disorders. Multiple drugs have been found to initiate downstream signaling pathways, leading to neuroprotective advantages in both animal model studies and clinical trials. The clinical importance of the cAMP-response element-binding protein (CREB) is examined in this article, encompassing its utility as both a predictive/prognostic marker and a target for therapeutic interventions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

ATF1:

Activation transcription factor 1

BDNF:

Brain-derived neurotrophic factor

bZIP:

Basic leucine zipper

CaMKIV:

Ca2+/calmodulin-dependent protein kinase IV

CaN:

Calcineurin

CREB:

CAMP-responsive element-binding protein

CREM:

CAMP-responsive element modulator

GPCRs:

G-protein-coupled receptors

JNK:

C-Jun N-terminal kinase pathway

KID:

Kinase inducible domain

MAPK:

Mitogen-activated protein kinase

NDDs:

Neurodegenerative disorders

NF-κB:

NF-kappa B, “nuclear factor kappa-light-chain-enhancer of activated B cells”

NGF:

Nerve growth factor

NMDARs:

N-Methyl-D-aspartate receptors

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PKA:

Protein kinase A

PP-1:

Protein phosphatase-1

RTKs:

Receptor tyrosine kinases

References

  1. Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med. 2010;14(3):457–87. https://doi.org/10.1111/j.1582-4934.2010.01010.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khan H, Garg N, Singh TG, Kaur A, Thapa K. Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases. Neurochem Res. 2022;4:1–25. https://doi.org/10.1007/s11064-021-03521-9.

    Article  CAS  Google Scholar 

  3. Khan H, Tiwari P, Kaur A, Singh TG. Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol. 2021;58(8):3903–17. https://doi.org/10.1007/s12035-021-02387-w.

    Article  CAS  PubMed  Google Scholar 

  4. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. https://doi.org/10.1101/cshperspect.a028035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, et al. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. International Int J Mol Sci. 2021;22(3):1413. https://doi.org/10.3390/ijms22031413.

    Article  CAS  Google Scholar 

  6. Bhattacharya T, Soares GA, Chopra H, Rahman MM, Hasan Z, Swain SS, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials. 2022;15(3):804. https://doi.org/10.3390/ma15030804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camandola S, Mattson MP. NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets. 2007;11(2):123–32. https://doi.org/10.1517/14728222.11.2.123.

    Article  CAS  PubMed  Google Scholar 

  8. Schumacher MA, Goodman RH, Brennan RG. The structure of a CREB bZIP· somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J Biol Chem. 2000;275(45):35242–7. https://doi.org/10.1074/jbc.M007293200.

    Article  CAS  PubMed  Google Scholar 

  9. Yin Y, Gao D, Wang Y, Wang ZH, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci. 2016;113(26):E3773–81. https://doi.org/10.1073/pnas.1604519113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother. 2021;140:111729. https://doi.org/10.1016/j.biopha.2021.111729.

    Article  CAS  PubMed  Google Scholar 

  11. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Villalba AM, et al. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet. 2002;31(1):47–54. https://doi.org/10.1038/ng882.

    Article  CAS  PubMed  Google Scholar 

  12. Lu KT, Chiou RY, Chen LG, Chen MH, Tseng WT, Hsieh HT, et al. Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem. 2006;54(8):3126–31. https://doi.org/10.1021/jf053011q.

    Article  CAS  PubMed  Google Scholar 

  13. Barco A, Pittenger C, Kandel ER. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets. 2003;7(1):101–14. https://doi.org/10.1517/14728222.7.1.101.

    Article  CAS  PubMed  Google Scholar 

  14. Gong Y, Chen J, Jin Y, Wang C, Zheng M, He L. GW9508 ameliorates cognitive impairment via the cAMP-CREB and JNK pathways in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology. 2020;164:107899. https://doi.org/10.1016/j.neuropharm.2019.107899.

    Article  CAS  PubMed  Google Scholar 

  15. Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, et al. Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules. 2021;26(12):3724. https://doi.org/10.3390/molecules26123724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environ Sci Pollut Res. 2020;27:44771–96. https://doi.org/10.1007/s11356-020-10738-8.

    Article  CAS  Google Scholar 

  17. Du Q, Zhu X, Si J. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med. 2020;245(1):1. https://doi.org/10.1177/1535370219894558.

    Article  CAS  Google Scholar 

  18. Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci. 2018;30(11):255. https://doi.org/10.3389/fnmol.2018.00255.

    Article  CAS  Google Scholar 

  19. Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, et al. Pharmacological modulation of ubiquitin-proteasome pathways in oncogenic signaling. Int J Mol Sci. 2021;22(21):11971. https://doi.org/10.3390/ijms222111971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakamoto K, Karelina K, Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem. 2011;116(1):1–9. https://doi.org/10.1111/j.1471-4159.2010.07080.x.

    Article  CAS  PubMed  Google Scholar 

  21. Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020;18(10):918–35. https://doi.org/10.2174/1570159X18666200207120949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci. 2021;32(2):219–34. https://doi.org/10.1515/revneuro-2020-0070.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez J, Jurado-Coronel JC, Avila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci. 2015;125(5):315–27. https://doi.org/10.3109/00207454.2014.940941.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, Li S, Gaur U, Zheng W. Artemisinin improved neuronal functions in Alzheimer’s disease animal model 3xtg mice and neuronal cells via stimulating the ERK/CREB signaling pathway. Aging Dis. 2020;11(4):801. https://doi.org/10.14336/AD.2019.0813.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feng H, Wang C, He W, Wu X, Li S, Zeng Z, et al. Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects. Metab Brain Dis. 2019;34(2):583–91. https://doi.org/10.1007/s11011-018-0374-4.

    Article  CAS  PubMed  Google Scholar 

  26. Wang CY, Wang ZY, Xie JW, Wang T, Wang X, Xu Y, et al. Dl-3-n-butylphthalide-induced upregulation of antioxidant defense is involved in the enhancement of cross talk between CREB and Nrf2 in an Alzheimer’s disease mouse model. Neurobiol Aging. 2016;1(38):32–46. https://doi.org/10.1016/j.neurobiolaging.2015.10.024.

    Article  CAS  Google Scholar 

  27. Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021;15(273):119311. https://doi.org/10.1016/j.lfs.2021.119311.

    Article  CAS  Google Scholar 

  28. Rosa E, Fahnestock M. CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging. 2015;36(8):2406–13. https://doi.org/10.1016/j.neurobiolaging.2015.04.014.

    Article  CAS  PubMed  Google Scholar 

  29. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+-and stimulus duration–dependent switch for hippocampal gene expression. Cell. 1996;87(7):1203–14. https://doi.org/10.1016/s0092-8674(00)81816-4.

    Article  CAS  PubMed  Google Scholar 

  30. Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: potential neuroprotective agents in ischemic injury. Life Sci. 2022;288:120186. https://doi.org/10.1016/j.lfs.2021.120186.

    Article  CAS  PubMed  Google Scholar 

  31. Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28(8):436–45. https://doi.org/10.1016/j.tins.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta A, Khan H, Kaur A, Singh TG. Novel targets explored in the treatment of alcohol withdrawal syndrome. CNS Neurol Disord Drug Targets. 2021;20(2):158–73. https://doi.org/10.2174/1871527319999201118155721.

    Article  CAS  PubMed  Google Scholar 

  33. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, et al. Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci. 2002;22(22):9868–76. https://doi.org/10.1523/JNEUROSCI.22-22-09868.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science. 1999;286(5448):2358–61. https://doi.org/10.1126/science.286.5448.2358.

    Article  CAS  PubMed  Google Scholar 

  35. Kievit P, Maurer RA. The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter. Mol Endocrinol. 2005;19(1):138–47. https://doi.org/10.1210/me.2004-0016.

    Article  CAS  PubMed  Google Scholar 

  36. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, et al. The critical role of cyclin D2 in adult neurogenesis. J Cell Biol. 2004;167(2):209–13. https://doi.org/10.1083/jcb.200404181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020;257:118020. https://doi.org/10.1016/j.lfs.2020.118020.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma B, Sharma A. Future prospect of nanotechnology in development of anti-ageing formulations. Int J Pharm Pharm Sci. 2012;4(3):57–66.

    CAS  Google Scholar 

  39. Garg N, Singh TG, Khan H, Arora S, Kaur A, Mannan A. Mechanistic interventions of selected ocimum species in management of diabetes, obesity and liver disorders: transformative developments from preclinical to clinical approaches. Biointerface Res Appl Chem. 2021;12(1):1304–23. https://doi.org/10.33263/BRIAC121.13041323.

    Article  Google Scholar 

  40. Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res. 2022;17:1–6. https://doi.org/10.1007/s00011-022-01546-6.

    Article  CAS  Google Scholar 

  41. Wang DD, Li J, Yu LP, Wu MN, Sun LN, Qi JS. Desipramine improves depression-like behavior and working memory by up-regulating p-CREB in Alzheimer’s disease associated miceJ. Integr Neurosci. 2016;15(02):247–60. https://doi.org/10.1142/S021963521650014X.

    Article  Google Scholar 

  42. Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH, et al. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int. 2019;131:104537. https://doi.org/10.1016/j.neuint.2019.104537.

    Article  CAS  PubMed  Google Scholar 

  43. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG. Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res. 2021;1761:147399. https://doi.org/10.1016/j.brainres.2021.147399.

    Article  CAS  Google Scholar 

  44. Hosseini L, Mahmoudi J, Pashazadeh F, Salehi-Pourmehr H, Sadigh-Eteghad S. Protective effects of nicotinamide adenine dinucleotide and related precursors in Alzheimer’s disease: a systematic review of preclinical studies. J Mol Neurosci. 2021;71(7):1425–35. https://doi.org/10.1007/s12031-021-01842-6.

    Article  CAS  PubMed  Google Scholar 

  45. Shukla PK, Sandhu JK, Ahirwar A, Ghai D, Maheshwary P, Shukla PK. Multiobjective genetic algorithm and convolutional neural network based COVID-19 identification in chest X-ray images. Math Probl Eng. 2021;20(2021):1–9. https://doi.org/10.1155/2021/7804540.

    Article  CAS  Google Scholar 

  46. DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther. 2015;40(8):504.

    Google Scholar 

  47. Labadorf A, Choi SH, Myers RH. Evidence for a pan-neurodegenerative disease response in Huntington’s and Parkinson’s disease expression profiles. Front Mol Neurosci. 2018;11(10):430. https://doi.org/10.3389/fnmol.2017.00430.

    Article  CAS  Google Scholar 

  48. Wu X, Liang Y, Jing X, Lin D, Chen Y, Zhou T, et al. Rifampicin prevents SH-SY5Y cells from rotenone-induced apoptosis via the PI3K/Akt/GSK-3β/CREB signaling pathway. Neurochem Res. 2018;43(4):886–93. https://doi.org/10.1007/s11064-018-2494-y.

    Article  CAS  PubMed  Google Scholar 

  49. Zhong J, Dong W, Qin Y, Xie J, Xiao J, Xu J, et al. Roflupram exerts neuroprotection via activation of CREB/PGC-1α signalling in experimental models of Parkinson’s disease. Br J Pharmacol. 2020;177(10):2333–50. https://doi.org/10.1111/bph.14983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun C, Wang Y, Mo M, Song C, Wang X, Chen S, et al. Minocycline protects against rotenone-induced neurotoxicity correlating with upregulation of Nurr1 in a Parkinson’s disease rat model. Biomed Res Int. 2019;5:2019. https://doi.org/10.1155/2019/6843265.

    Article  CAS  Google Scholar 

  51. Zheng M, Liu C, Fan Y, Shi D, Jian W. Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the cAMP/PKA/CREB signaling pathway. J Ethnopharmacol. 2019;5(245):112182. https://doi.org/10.1016/j.jep.2019.112182.

    Article  CAS  Google Scholar 

  52. Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol. 2020;72(11):1513–27. https://doi.org/10.1111/jphp.13336.

    Article  CAS  PubMed  Google Scholar 

  53. Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr. 2022;5:1–23. https://doi.org/10.1080/10408398.2022.2050349.

    Article  CAS  Google Scholar 

  54. Khan H, Grewal AK, Singh TG. Pharmacological postconditioning by protocatechuic acid attenuates brain injury in ischemia-reperfusion (I/R) mice model: implications of nuclear factor erythroid-2-related factor pathway. Neuroscience. 2022. https://doi.org/10.1016/j.neuroscience.2022.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hu S, Cao Q, Xu P, Ji W, Wang G, Zhang Y. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats. Exp Ther Med. 2016;11(3):1005–10. https://doi.org/10.3892/etm.2015.2958.

    Article  CAS  PubMed  Google Scholar 

  56. Li S, Peng T, Zhao X, Silva M, Liu L, Zhou W, et al. Artemether confers neuroprotection on cerebral ischemic injury through stimulation of the Erk1/2-P90rsk-CREB signaling pathway. Redox Biol. 2021;46:102069. https://doi.org/10.1016/j.redox.2021.102069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang H, Zhang Y, Li H, Zeng W, Qiao M. Shuyu capsules relieve liver-qi depression by regulating ERK-CREB-BDNF signal pathway in central nervous system of rat. Exp Ther Med. 2017;14(5):4831–8. https://doi.org/10.3892/etm.2017.5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bu F, Min JW, Munshi Y, Lai YJ, Qi L, Urayama A, et al. Activation of endothelial ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and angiogenesis via activating Pak1 in mice. Exp Neurol. 2019;322:113059. https://doi.org/10.1016/j.expneurol.2019.113059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takagi T, Hara H. Protective effects of cilostazol against hemorrhagic stroke: current and future perspectives. J Pharmacol Sci. 2016;131(3):155–61. https://doi.org/10.1016/j.jphs.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  60. Barfejani AH, Jafarvand M, Seyedsaadat SM, Rasekhi RT. Donepezil in the treatment of ischemic stroke: review and future perspective. Life Sci. 2020;263:118575. https://doi.org/10.1016/j.lfs.2020.118575.

    Article  CAS  PubMed  Google Scholar 

  61. Etgen AM, Jover-Mengual T, Zukin RS. Neuroprotective actions of estradiol and novel estrogen analogs in ischemia: translational implications. Front Neuroendocrinol. 2011;32(3):336–52. https://doi.org/10.1016/j.yfrne.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  62. Chaturvedi RK, Hennessey T, Johri A, Tiwari SK, Mishra D, Agarwal S, et al. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington’s disease. Hum Mol Genet. 2012;21(15):3474–88. https://doi.org/10.1093/hmg/dds178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi YS, Lee B, Cho HY, Reyes IB, Pu XA, Saido TC, et al. CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis. 2009;36(2):259–68. https://doi.org/10.1016/j.nbd.2009.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee M, Ban JJ, Chung JY, Im W, Kim M. Amelioration of Huntington’s disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation. PLoS ONE. 2018;13(5):e0195968. https://doi.org/10.1371/journal.pone.0195968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paldino E, Balducci C, La Vitola P, Artioli L, D’Angelo V, Giampà C, et al. Neuroprotective effects of doxycycline in the R6/2 mouse model of Huntington’s disease. Mol Neurobiol. 2020;57(4):1889–903. https://doi.org/10.1007/s12035-019-01847-8.

    Article  CAS  PubMed  Google Scholar 

  66. Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurotherapeutics. 2020;17(1):252–68. https://doi.org/10.1007/s13311-019-00805-5.

    Article  CAS  PubMed  Google Scholar 

  67. Mehan S, Parveen S, Kalra S. Adenyl cyclase activator forskolin protects against Huntington’s disease-like neurodegenerative disorders. Neural Regen Res. 2017;12(2):290. https://doi.org/10.4103/1673-5374.200812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paldino E, D’Angelo V, Laurenti D, Angeloni C, Sancesario G, Fusco FR. Modulation of inflammasome and pyroptosis by olaparib, a PARP-1 inhibitor, in the R6/2 mouse model of Huntington’s disease. Cells. 2020;9(10):2286. https://doi.org/10.3390/cells9102286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen B, An J, Guo YS, Tang J, Zhao JJ, Zhang R, et al. Tetramethylpyrazine induces the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway. Cell Biol Int. 2021;45(12):2429–42. https://doi.org/10.1002/cbin.11687.

    Article  CAS  PubMed  Google Scholar 

  70. Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med. 2016;11(6):2553–60. https://doi.org/10.3892/etm.2016.3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan H, Gupta A, Singh TG, Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep. 2021;73(5):1240–54. https://doi.org/10.1007/s43440-021-00258-8.

    Article  CAS  PubMed  Google Scholar 

  72. Danduga RC, Dondapati SR, Kola PK, Grace L, Tadigiri RV, Kanakaraju VK. Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats. Biomed Pharmacother. 2018;105:1254–68. https://doi.org/10.1016/j.biopha.2018.06.079.

    Article  CAS  PubMed  Google Scholar 

  73. Kreilaus F, Spiro AS, Hannan AJ, Garner B, Jenner AM. Therapeutic effects of anthocyanins and environmental enrichment in R6/1 Huntington’s disease mice. J Huntingt Dis. 2016;5(3):285–96. https://doi.org/10.3233/JHD-160204.

    Article  CAS  Google Scholar 

  74. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–72. https://doi.org/10.1056/NEJMra1603471.

    Article  CAS  PubMed  Google Scholar 

  75. Ding ML, Ma H, Man YG, Lv HY. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol. 2017;95(12):1396–405. https://doi.org/10.1139/cjpp-2016-0333.

    Article  CAS  PubMed  Google Scholar 

  76. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. The Lancet. 2015;385(9971):884–98. https://doi.org/10.1016/S0140-6736(14)60456-6.

    Article  Google Scholar 

  77. Wang G, Zhu Z, Xu D, Sun L. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy. Clin Neurol Neurosurg. 2020;196:106018. https://doi.org/10.1016/j.clineuro.2020.106018.

    Article  PubMed  Google Scholar 

  78. Zhen JL, Chang YN, Qu ZZ, Fu T, Liu JQ, Wang WP. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling. Epilepsy Behav. 2016;1(57):177–84. https://doi.org/10.1016/j.yebeh.2016.02.001.

    Article  Google Scholar 

  79. Ping X, Qin SK, Liu SN, Lu Y, Zhao YN, Cao YF, et al. Effects of Huazhuo Jiedu Shugan Decoction on cognitive and emotional disorders in a rat model of epilepsy: possible involvement of AC-cAMP-CREB signaling and NPY expression. Evid Based Complement Alternat Med. 2019;13:2019. https://doi.org/10.1155/2019/4352879.

    Article  Google Scholar 

  80. Yu X, Guan Q, Wang Y, Shen H, Zhai L, Lu X, et al. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res. 2019;1(154):90–6. https://doi.org/10.1016/j.eplepsyres.2019.05.007.

    Article  CAS  Google Scholar 

  81. Sharma P, Kumari S, Sharma J, Purohit R, Singh D. Hesperidin interacts with CREB-BDNF signaling pathway to suppress pentylenetetrazole-induced convulsions in zebrafish. Front Pharmacol. 2021;11(11):2178. https://doi.org/10.3389/fphar.2020.607797.

    Article  CAS  Google Scholar 

  82. Tavassoli M, Ardjmand A. Pentylenetetrazol and morphine interaction in a state-dependent memory model: role of CREB signaling. Basic Clin Neurosci. 2020;11(4):557. https://doi.org/10.32598/bcn.11.4.1482.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO. Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromol Med. 2015;17(1):35–46. https://doi.org/10.1007/s12017-014-8337-3.

    Article  CAS  Google Scholar 

  84. Lu Y, Wang X, Feng J, Xie T, Si P, Wang W. Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull. 2019;1(148):63–9. https://doi.org/10.1016/j.brainresbull.2019.03.009.

    Article  CAS  Google Scholar 

  85. Sawamoto A, Okuyama S, Nakajima M, Furukawa Y. Citrus flavonoid 3, 5, 6, 7, 8, 3′, 4′-heptamethoxyflavone induces BDNF via cAMP/ERK/CREB signaling and reduces phosphodiesterase activity in C6 cells. Pharmacol Rep. 2019;71(4):653–8. https://doi.org/10.1016/j.pharep.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  86. Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology. 2020;442:152542. https://doi.org/10.1016/j.tox.2020.152542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TGS. Wrote the manuscript: NK, HK. Editing of the manuscript: HK, AK, TGS. Critically reviewed the article: TGS. Supervision: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Ethical standards

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakha, N., Khan, H., Kaur, A. et al. Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration. Pharmacol. Rep 75, 1152–1165 (2023). https://doi.org/10.1007/s43440-023-00526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00526-9

Keywords

Navigation