Skip to main content

Advertisement

Log in

The effect of poly I:C or LPS priming on the therapeutic efficacy of mesenchymal stem cells in an adjuvant-induced arthritis rat model

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The immunomodulatory properties of mesenchymal stem cells (MSCs) have made them a prospective treatment option for inflammatory and autoimmune disorders. Recent studies have found an association between the immunomodulatory function of MSCs and Toll-like receptors (TLRs). Here, we investigated the effect of priming with lipopolysaccharide (LPS) as TLR4 ligand or polyinosinic:polycytidylic acid (poly I:C) as TLR3 ligand on the immunomodulatory function of adipose-derived MSCs (ADMSCs) in vitro and for the first time in an adjuvant-induced arthritis model (AIA).

Methods

ADMSCs were treated with LPS or poly I:C for 1 h. Splenocyte proliferation in the presence of primed ADMSCs was assessed in vitro using an MTT assay. Next, we investigated the therapeutic effect of primed ADMSCs in vivo. Male Wistar rats were infused with complete Freund’s adjuvant (CFA) to develop arthritis and then intraperitoneally treated with not-primed, poly I:C- or LPS-primed ADMSCs. Clinical signs, histopathological alteration, and serum and spleen cytokine levels were analyzed.

Results

Poly I:C-primed ADMSCs significantly reduced splenocytes proliferation, while ADMSCs primed with LPS increased splenocytes proliferation. Furthermore, poly I:C-primed ADMSCs significantly alleviated the clinical and histopathological severity and the secretion of inflammatory cytokines associated with Th17/Th1 such as IL-17 and IFN-γ. Poly I:C-primed ADMSCs also increased cytokines IL-10 and TGF-β. TNF-α and IL-6 Levels were also markedly diminished in the serum of AIA animals treated with poly I:C-primed ADMSCs. In contrast, priming ADMSCs with LPS significantly reduced the therapeutic effect of ADMSCs in AIA animals.

Conclusion

As a result of these findings, poly I:C priming may be a new technique for improving the therapeutic effects of MSCs in arthritic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data will be available upon request.

Abbreviations

AIA:

Adjuvant-induced arthritis

CFA:

Complete Freund’s adjuvant

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediamine tetra-acetic acid

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal Bovine Serum

IDO:

Indoleamine 2 3-dioxygenase

IFN-γ:

Interferon gamma

IL-6:

Interleukin-6

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MTT:

Thiazolyl blue tetrazolium bromide

NF-κB:

Nuclear-factor-kappa B

PBS:

Phosphate-buffered saline solution

PHA:

Phytohemagglutinin

PGE2:

Prostaglandin E2

Poly I:C:

Polyinosinic:polycytidylic acid

TGF-β:

Transforming growth factor beta

Tregs:

Regulatory T cells Th17, T helper 17 cells

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

NSAIDs:

Nonsteroidal anti-inflammatory drugs

References

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61.

    Article  CAS  PubMed  Google Scholar 

  2. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51(suppl_5):v3-11.

    Article  CAS  Google Scholar 

  3. Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992;35(7):729–35.

    Article  CAS  PubMed  Google Scholar 

  4. Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Ther. 2005;7 Suppl 2(2):S4-14.

    Article  PubMed  Google Scholar 

  5. Tran CN, Lundy SK, Fox DA. Synovial biology and T cells in rheumatoid arthritis. Pathophysiology. 2005;12(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  6. Shahrara S, Huang Q, Mandelin AM 2nd, Pope RM. TH-17 cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rodeghero R, Cao Y, Olalekan SA, Iwakua Y, Glant TT, Finnegan AJT. Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol. 2013;190(11):5423–35.

    Article  CAS  PubMed  Google Scholar 

  8. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907–16.

    Article  CAS  PubMed  Google Scholar 

  9. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    Article  CAS  PubMed  Google Scholar 

  10. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14(1):397–440.

    Article  CAS  PubMed  Google Scholar 

  11. Gabay C, Riek M, Scherer A, Finckh A, Physicians SC. Effectiveness of biologic DMARDs in monotherapy versus in combination with synthetic DMARDs in rheumatoid arthritis: data from the Swiss Clinical Quality Management Registry. Rheumatology (Oxford). 2015;54(9):1664–72.

    Article  CAS  Google Scholar 

  12. Simon LS, Weaver AL, Graham DY, Kivitz AJ, Lipsky PE, Hubbard RC, et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. JAMA. 1999;282(20):1921–8.

    Article  CAS  PubMed  Google Scholar 

  13. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987–97.

    Article  CAS  PubMed  Google Scholar 

  14. Salliot C, Gossec L, Ruyssen-Witrand A, Luc M, Duclos M, Guignard S, et al. Infections during tumour necrosis factor-alpha blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients. Rheumatology (Oxford). 2007;46(2):327–34.

    Article  CAS  Google Scholar 

  15. Aygun D, Kaplan S, Odaci E, Onger ME, Altunkaynak ME. Toxicity of non-steroidal anti-inflammatory drugs: a review of melatonin and diclofenac sodium association. Histol Histopathol. 2012;27(4):417–36.

    CAS  PubMed  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  17. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    Article  CAS  PubMed  Google Scholar 

  18. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12.

    Article  CAS  PubMed  Google Scholar 

  20. Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology. 2020;28(2):585–601.

    Article  CAS  PubMed  Google Scholar 

  21. Rafei M, Birman E, Forner K, Galipeau J. Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Mol Ther. 2009;17(10):1799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sadeghi S, Mosaffa N, Hashemi SM, Mehdi Naghizadeh M, Ghazanfari T. The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog. Int Immunopharmacol. 2020;80: 105879.

    Article  CAS  PubMed  Google Scholar 

  23. Alvaro-Gracia JM, Jover JA, Garcia-Vicuna R, Carreno L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017;76(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  24. Kehoe O, Cartwright A, Askari A, El Haj AJ, Middleton J. Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J Transl Med. 2014;12(1):157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22(24):3192–202.

    Article  CAS  PubMed  Google Scholar 

  26. Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny MJ. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells. 2012;4(10):101.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hwa Cho H, Bae YC, Jung JS. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells. 2006;24(12):2744–52.

    Article  PubMed  CAS  Google Scholar 

  28. DelaRosa O, Dalemans W, Lombardo EJ. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol. 2012;3:182.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–95.

    Article  CAS  PubMed  Google Scholar 

  30. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2008;26(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  31. Hwang SH, Cho HK, Park SH, Lee W, Lee HJ, Lee DC, et al. Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PLoS ONE. 2014;9(7): e101558.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4): e10088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol. 2019;74: 105689.

    Article  CAS  PubMed  Google Scholar 

  34. Rahavi H, Hashemi SM, Soleimani M, Mohammadi J, Tajik NJ. Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model. J Diabetes Res. 2015;2015:1–10.

    Article  Google Scholar 

  35. Newbould BB. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother. 1963;21(1):127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banji D, Pinnapureddy J, Banji OJ, Saidulu A, Hayath MS. Synergistic activity of curcumin with methotrexate in ameliorating Freund's Complete Adjuvant induced arthritis with reduced hepatotoxicity in experimental animals. 2011;668(1-2):293-8.

  37. Chang Y, Wu Y, Wang D, Wei W, Qin Q, Xie G, et al. Therapeutic effects of TACI-Ig on rats with adjuvant-induced arthritis via attenuating inflammatory responses. Rheumatology (Oxford). 2011;50(5):862–70.

    Article  CAS  Google Scholar 

  38. Nishikawa M, Myoui A, Tomita T, Takahi K, Nampei A, Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum. 2003;48(9):2670–81.

    Article  CAS  PubMed  Google Scholar 

  39. DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm. 2010;2010: 865601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007;109(4):1422–32.

    Article  CAS  PubMed  Google Scholar 

  41. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells. 2009;27(4):909–19.

    Article  CAS  PubMed  Google Scholar 

  42. Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008;26(1):279–89.

    Article  CAS  PubMed  Google Scholar 

  43. Vega-Letter AM, Kurte M, Fernandez-O’Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, et al. Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE. Stem Cell Res Ther. 2016;7(1):150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells. 2014;32(2):521–33.

    Article  CAS  PubMed  Google Scholar 

  45. Fuenzalida P, Kurte M, Fernandez-O’Ryan C, Ibañez C, Gauthier-Abeliuk M, Vega-Letter AM, et al. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium–induced colitis model. Cytotherapy. 2016;18(5):630–41.

    Article  CAS  PubMed  Google Scholar 

  46. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–93.

    Article  CAS  PubMed  Google Scholar 

  47. Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine. 2015;74(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  48. Fournier C. Where do T cells stand in rheumatoid arthritis? Jt Bone Spine. 2005;72(6):527–32.

    Article  Google Scholar 

  49. Ayenehdeh JM, Niknam B, Rasouli S, Hashemi SM, Rahavi H, Rezaei N, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol Lett. 2017;188:21–31.

    Article  CAS  Google Scholar 

  50. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado MJA. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19.

    Article  PubMed  CAS  Google Scholar 

  51. Park A, Park H, Yoon J, Kang D, Kang MH, Park YY, et al. Priming with Toll-like receptor 3 agonist or interferon-gamma enhances the therapeutic effects of human mesenchymal stem cells in a murine model of atopic dermatitis. Stem Cell Res Ther. 2019;10(1):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiu Y, Guo J, Mao R, Chao K, Chen BL, He Y, et al. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol. 2017;10(3):727–42.

    Article  CAS  PubMed  Google Scholar 

  53. Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol. 2019;74: 105687.

    Article  CAS  PubMed  Google Scholar 

  54. Yan X, Cen Y, Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression. Nature. 2016;6(1):1–12.

    CAS  Google Scholar 

  55. Nishimoto N. Interleukin-6 in rheumatoid arthritis. Curr Opin Rheumatol. 2006;18(3):277–81.

    Article  CAS  PubMed  Google Scholar 

  56. Bloor AJ, Patel A, Griffin JE, Gilleece MH, Radia R, Yeung DT, et al. Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nat Med. 2020;26(11):1720–5.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao C, Ikeya M. Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018;2018:1–8.

    Google Scholar 

Download references

Funding

This project was supported financially by the Iran University of Medical Sciences, Tehran, Iran (Grant no. 97-03-87-32665).

Author information

Authors and Affiliations

Authors

Contributions

SZ lfaghari designed and performed experiments, analyzed data, and wrote the manuscript; PBM contributed to the development of the protocol and corrected the manuscript; ARD contributed to the final version of the manuscript; MRF contributed to animal studies; FE contributed to cell preparation; SMH verified the analytical data and helped supervise the project; MTJ supervised the project. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Seyed Mahmoud Hashemi or Mohammad Taghi Joghataei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 176066 KB)

Supplementary file2 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, S., Milan, P.B., Dehpour, A.R. et al. The effect of poly I:C or LPS priming on the therapeutic efficacy of mesenchymal stem cells in an adjuvant-induced arthritis rat model. Pharmacol. Rep 74, 654–668 (2022). https://doi.org/10.1007/s43440-022-00386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00386-9

Keywords

Navigation