Skip to main content

Advertisement

Log in

Dietary phytochemicals/nutrients as promising protector of breast cancer development: a comprehensive analysis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Genetic change, particularly epigenetic alteration, is one of the imperative factors for sporadic breast cancer development in the worldwide population of women. The DNA methylation process is essential and natural for human cellular renewal and tissue homeostasis, but its dysregulation contributes to many pathological changes, including breast tumorigenesis. Chemopreventive agents mainly protect the abnormal DNA methylation either by hindering the division of pre-malignant cells or looming the DNA damage, which leads to malignancy. The present review article is about understanding the potential role of dietary phytochemicals in breast cancer prevention. Accordingly, a literature search of the published article until August 2021 has been performed. Further, we have investigated the binding affinity of different phytochemicals isolated from diverse dietary sources against the various oncogenic proteins related to breast cancer initiation to understand the common target(s) in breast cancer prevention mechanisms. Various small phytochemicals, especially dietary phytochemicals including sulforaphane, mahanine, resveratrol, linolenic acid, diallyl sulfide, benzyl/phenethyl isothiocyanate, etc. are being investigated as the chemopreventive agent to manage breast cancer development, and some of them have shown promising outcomes in the cited research. In this present review, we discuss the recent advancement in acceptance of such types of potential dietary phytochemicals as a chemopreventive agent against breast cancer development and their inner lining mechanism. The critical clinical trials and cohort studies have also been considered to understand the progress in contemporary perspectives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BITC:

Benzyl isothiocyanate

DNA:

Deoxyribonucleic acid

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

FDA:

Food and Drug Administration

HER:

Human epidermal growth factor receptor

PEITC:

Phenethyl isothiocyanate

PR:

Progesterone receptor

TNBC:

Triple-negative breast cancer

References

  1. Kolak A, Kaminska M, Sygit K, Budny A, Surdyka D, Kukielka-Budny B, et al. Primary and secondary prevention of breast cancer. Ann Agric Environ Med. 2017;24(4):549–53.

    Article  PubMed  Google Scholar 

  2. Ullah MF. Breast cancer: current perspectives on the disease status. Adv Exp Med Biol. 2019;1152:51–64.

    Article  CAS  Google Scholar 

  3. Samanta SK, Sehrawat A, Kim SH, Hahm ER, Shuai Y, Roy R, et al. Disease subtype-independent biomarkers of breast cancer chemoprevention by the ayurvedic medicine phytochemical withaferin A. J Natl Cancer Inst. 2016;109(6):djw293.

  4. Tray N, Taff J, Adams S. Therapeutic landscape of metaplastic breast cancer. Cancer Treat Rev. 2019;79: 101888. https://doi.org/10.1016/j.ctrv.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  5. Holm J, Yu NYL, Johansson A, Ploner A, Hall P, Lindström LS, et al. Concordance of immunohistochemistry-based and gene expression-based subtyping in breast cancer. JNCI Cancer Spectr. 2020;5(1):pkaa087.

  6. Maumy L, Harrissart G, Dewaele P, Aljaber A, Bonneau C, Rouzier R, et al. Impact of nutrition on breast cancer mortality and risk of recurrence, a review of the evidence. Bull Cancer. 2020;107(1):61–71.

    Article  PubMed  Google Scholar 

  7. Allemani C, Matsuda T, Carlo VD, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival: analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers during 2000–2014 from 322 population-based registries in 71 countries (CONCORD-3). Lancet. 2018;391(10125):1023–75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, et al. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9(4):403–19.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uzunlulu M, Caklili OT, Oguz A. Association between metabolic syndrome and cancer. Ann NutrMetab. 2016;68(3):173–9.

    CAS  Google Scholar 

  10. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci. 2019;20(20):4981.

    Article  CAS  PubMed Central  Google Scholar 

  11. Waters EA, McNeel TS, Stevens WM, Freedman AN. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat. 2012;134(2):875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mokbel K, Mokbel K. Chemoprevention of breast cancer with vitamins and micronutrients: a concise review. In Vivo. 2019;33(4):983–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med. 2018;23(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polyak K. Breast cancer: origins and evolution. J Clin Invest. 2007;117(11):3155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yersal O, Barutca S. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gu KJ, Li G. An overview of cancer prevention: chemoprevention and immunoprevention. J Cancer Prev. 2020;25(3):127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farkas A, Vanderberg R, Merriam S, DiNardo D. Breast cancer chemoprevention: a practical guide for the primary care provider. J Womens Health (Larchmt).2020;29(1):46–56.

  19. Kandimalla R, Das M, Barge SR, Sarma PP, Koiri DJ, Devi A, et al. Variation in biosynthesis of an effective anticancer secondary metabolite, mahanine in Murrayakoenigii, conditional on soil physicochemistry and weather suitability. Sci Rep. 2020;10(1):1–11.

    Article  CAS  Google Scholar 

  20. Ávila-Gálvez MÁ, Giménez-Bastida JA, Espín JC, González-Sarrías A. Dietary phenolics against breast cancer. a critical evidence-based review and future perspectives. Int J Mol Sci. 2020;21(16):5718.

  21. Braakhuis A, Campion P, Bishop KS. Reducing breast cancer recurrence: the role of dietary polyphenolics. Nutrients. 2016;8(9):547.

    Article  PubMed Central  CAS  Google Scholar 

  22. Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. Semin Cancer Biol. 2016;40–41:209–32.

    Article  PubMed  CAS  Google Scholar 

  23. Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019;66(1):13–21.

    CAS  PubMed  Google Scholar 

  24. Malaguarnera L. Influence of Resveratrol on the immune response. Nutrients. 2019;11(5):946.

    Article  CAS  PubMed Central  Google Scholar 

  25. Miksits M, Wlcek K, Svoboda M, Kunert O, Haslinger E, Thalhammer T, et al. Antitumor activity of resveratrol and its sulfated metabolites against human breast cancer cells. Planta Med. 2009;75:1227–30.

    Article  CAS  PubMed  Google Scholar 

  26. Giménez-Bastida JA, Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Conjugated physiological resveratrol metabolites induce senescence in breast cancer cells: role of p53/p21 and p16/Rb pathways and ABC transporters. Mol Nutr Food Res. 2019;63:1900629.

    Article  CAS  Google Scholar 

  27. Wang Y, Yu J, Cui R, Lin J, Ding X. Curcumin in treating breast cancer: a review. J Lab Autom. 2016;21(6):723–31.

    Article  CAS  PubMed  Google Scholar 

  28. Song X, Zhang M, Dai E, Luo Y. Molecular targets of Curcumin in breast cancer. Mol Med Rep. 2019;19(1):23–9.

    CAS  PubMed  Google Scholar 

  29. Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Physiological relevance of the antiproliferative and estrogenic effects of dietary polyphenol aglycones versus their phase-II metabolites on breast cancer cells: a call of caution. J Agric Food Chem. 2018;66:8547–55.

    Article  PubMed  CAS  Google Scholar 

  30. Wang N, Ren D, Deng S, Yang X. Differential effects of baicalein and its sulfated derivatives in inhibiting proliferation of human breast cancer MCF-7 cells. Chem Biol Interact. 2014;221:99–108.

    Article  CAS  PubMed  Google Scholar 

  31. Delgado L, Fernandes I, González-Manzano S, de Freitas V, Mateus N, Santos-Buelga C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct. 2014;5:797.

    Article  CAS  PubMed  Google Scholar 

  32. Ezzati M, Yousefi B, Velaei K, Safa A. A review on anticancer properties of Quercetin in breast cancer. Life Sci. 2020;248: 117463.

    Article  CAS  PubMed  Google Scholar 

  33. Kasiri N, Rahmati M, Ahmadi L, Eskandari N, Motedayyen H. Therapeutic potential of Quercetin on human breast cancer in different dimension. Inflammopharmacology. 2020;28(1):39–62.

    Article  PubMed  Google Scholar 

  34. Khorsandi L, Orazizadeh M, Niazvand F, Abbaspour MR, Mansouri E, Khodadadi A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl Lek Listy. 2017;118(2):123–8.

    CAS  PubMed  Google Scholar 

  35. Yamazaki S, Sakakibara H, Takemura H, Yasuda M, Shimoi K. Quercetin-3-O-glucronide inhibits noradrenaline binding to α2-adrenergic receptor, thus suppressing DNA damage induced by treatment with 4-hydroxyestradiol and noradrenaline in MCF-10A cells. J Steroid Biochem Mol Biol. 2014;143:122–9.

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki S, Miyoshi N, Kawabata K, Yasuda M, Shimoi K. Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking b2-adrenergic signaling. Arch Biochem Biophys. 2014;557:18–27.

    Article  CAS  PubMed  Google Scholar 

  37. Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, et al. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1alpha and NFkappaB, and VEGF expression. Vasc Cell. 2013;5(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukund V. Genistein: its role in breast cancer growth and metastasis. Curr Drug Metab. 2020;21(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  39. Lin YJ, Hou YC, Lin CH, Hsu YA, Sheu JJ, Lai CH, et al. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. BiochemBiophys Res Commun. 2009;378(4):683–8.

    Article  CAS  Google Scholar 

  40. Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers. 2020;12:167.

    Article  CAS  PubMed Central  Google Scholar 

  41. Islam MA, Bekele R, vanden Berg JHJ, Kuswanti Y, Thapa O, Soltani S, et al. Deconjugation of soy isoflavoneglucuronides needed for estrogenic activity. Toxicol In Vitro. 2015;29:706–15.

    Article  CAS  PubMed  Google Scholar 

  42. Welsh JE. Vitamin D and breast cancer: past and present. J Steroid Biochem Mol Biol. 2018;117:15–20.

    Article  CAS  Google Scholar 

  43. Vinha AF, Alves RC, Barreira SV, Costa AS, Oliveira MB. Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the Mediterranean diet. Food Funct. 2015;6(4):1157–63.

    Article  CAS  PubMed  Google Scholar 

  44. Lopes CM, Dourado A, Oliveira R. Phytotherapy and nutritional suppliments on breast cancer. Biomed Res Int. 2017. https://doi.org/10.1155/2017/7207983.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu W, Kang S, Zhang D. Association of vitamin B6, vitamin B12 and methionine with risk of breast cancer: a dose–response meta-analysis. Br J Cancer. 2013;109(7):1926–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mocellin S, Briarava M, Pilati P. Vitamin B6 and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst. 2017;109(3):1–9.

    Article  PubMed  CAS  Google Scholar 

  47. Zeng J, Wang K, Ye F, Lei L, Zhou Y, Chen J, et al. Folate intake and the risk of breast cancer: an up-to date meta-analysis of prospective studies. Eur J Clin Nutr. 2019;73(12):1657–60.

    Article  PubMed  Google Scholar 

  48. Kim SJ, Zhang CX, Demsky R, Armel S, Kim YI, Narod SA, et al. Folic acid supplement use and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a case–control study. Breast Cancer Res Treat. 2019;174(3):741–8.

    Article  CAS  PubMed  Google Scholar 

  49. Estébanez N, Gómez Acebo I, Palazuelos C, Llorca J, DierssenSotos T. Vitamin D exposure and risk of breast cancer: a meta-analysis. Sci Rep. 2018;8(1):9039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Maalmi H, Ordóñez-Mena JM, Schöttker B, Brenner H. Serum 25-hydroxyvitamin D levels and survival in colorectal and breast cancer patients: systematic review and meta-analysis of prospective cohort studies. Eur J Cancer. 2014;50(8):1510–21.

    Article  CAS  PubMed  Google Scholar 

  51. He J, Gu Y, Zhang S. Vitamin A and breast cancer survival: a systematic review and meta-analysis. Clin Breast Cancer. 2018;6:e1389–400.

    Article  CAS  Google Scholar 

  52. Abbas S, Linseisen J, Chang-Claude J. Plasma 25-hydroxyvitamin D and premenopausal breast cancer risk in a German case-control study. Int J Cancer. 2009;124:250–5.

    Article  CAS  PubMed  Google Scholar 

  53. Eliassen AH, Liao X, Rosner B, Tamimi RM, Tworoger SS, Hankinson SE. Plasma carotenoids and risk of breast cancer over 20 y of follow-up. Am J Clin Nutr. 2015;101(6):1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gupta P, Adkins C, Lockman P, Srivastava SK. Metastasis of breast tumor cells to brain is suppressed by phenethylisothiocyanate in a novel in vivo metastasis model. PLoS ONE. 2013;8(6): e67278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cang S, Ma Y, Chiao J, Liu D. Phenethylisothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells. Exp Hematol Oncol. 2014;3(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gupta P, Srivastava SK. Antitumor activity of phenethylisothiocyanate in HER2-positive breast cancer models. BMC Med. 2012;10:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsou M, Tien N, Lu C, Chiang J, Yang J, Lin J, et al. Phenethylisothiocyanate promotes immune responses in normal BALB/c mice, inhibits murine leukemia WEHI-3 cells, and stimulates immunomodulations in vivo. Environ Toxicol. 2013;28(3):127–36.

    Article  CAS  PubMed  Google Scholar 

  58. Morris ME, Rutwij A. Dave pharmacokinetics and pharmacodynamics of phenethylisothiocyanate: implications in breast cancer prevention. AAPS J. 2014;16(4):705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dinh TN, Parat MO, Ong YS, Khaw KY. Anticancer activities of dietary benzyl isothiocyanate: a comprehensive review. Pharmacol Res. 2021;169: 105666.

    Article  CAS  PubMed  Google Scholar 

  60. Sehrawat A, Kim SH, Vogt A, Singh SV. Suppression of FOXQ1 in benzyl isothiocyanate-mediated inhibition of epithelial-mesenchymal transition in human breast cancer cells. Carcinogenesis. 2013;34(4):864–73.

    Article  CAS  PubMed  Google Scholar 

  61. Roy R, Hahm ER, White AG, Anderson CJ, Singh SV. AKT-dependent sugar addiction by benzyl isothiocyanate in breast cancer cells. MolCarcinog. 2019;58(6):996–1007.

    Article  CAS  Google Scholar 

  62. Shokri S, Jegasothy H, Augustin MA, Terefe NS. Thermosonication for the production of sulforaphane rich broccoli ingredients. Biomolecules. 2021;11(2):321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stephanie MT, Simon GR, Paul VL, Tom CK. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal. 2015;22(16):1382–424.

    Article  CAS  Google Scholar 

  64. Antony ML, Singh SV. Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyltrisulfide. Indian J Exp Biol. 2011;49(11):805–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yi LK, Su Q. Molecular mechanisms for the anticancer effects of diallyl disulfide. Food Chem Toxicol. 2013;57:362–70.

    Article  CAS  PubMed  Google Scholar 

  66. Puccinelli MT, Stan SD. Dietary bioactive diallyl trisulfide in cancer prevention and treatment. Int J Mol Sci. 2017;18(8):1645.

    Article  PubMed Central  CAS  Google Scholar 

  67. Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH. Garlic and its active compounds: a potential candidate in the prevention of cancer by modulating various cell signalling pathways. Anticancer Agents Med Chem. 2019;19(11):1314–24.

    Article  CAS  PubMed  Google Scholar 

  68. Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyltrisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett. 2008;269(2):305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hahm ER, Kim SH, Mathan SV, Singh RP, Singh SV. Mechanistic targets of diallyltrisulfide in human breast cancer cells identified by RNA-seq analysis. J Cancer Prev. 2021;26(2):128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Samanta SK, Kandimalla R, Gogoi B, Dutta KN, Choudhury P, Deb PK, et al. Phytochemical portfolio and anticancer activity of Murrayakoenigii and its primary active component. Mahanine Pharmacol Res. 2018;129:227–36.

    Article  CAS  PubMed  Google Scholar 

  71. Das M, Kandimalla R, Gogoi B, Dutta KN, Choudhury P, Devi R, et al. Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacol Res. 2019;146: 104330.

    Article  CAS  PubMed  Google Scholar 

  72. Wu D, Jia H, Zhang Z, Li S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β-catenin signaling pathway. Mol Med Rep. 2020;22(6):4868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen M, Xiao C, Jiang W, Yang W, Qin Q, Tan Q, et al. Capsaicin inhibits proliferation and induces apoptosis in breast cancer by down-regulating FBI-1-mediated NF-κB pathway. Drug Des Dev Ther. 2021;15:125–40.

    Article  Google Scholar 

  74. Jin H, Park J, Kim H, Chang YH, Hong YJ, Park I. Piperlongumine downregulates the expression of HER family in breast cancer cells. Biochem Biophys Res Commun. 2017;486(4):1083–9.

    Article  CAS  PubMed  Google Scholar 

  75. Donoso A, González-Durán J, Muñoz AA, González PA, Agurto-Muñoz C. Therapeutic uses of natural astaxanthin: an evidence-based review focused on human clinical trials. Pharmacol Res. 2021;166: 105479.

    Article  CAS  PubMed  Google Scholar 

  76. Sesso HD, Buring JE, Zhang SM, Norkus EP, Gaziano JM. Dietary and plasma lycopene and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1074–81.

    Article  CAS  PubMed  Google Scholar 

  77. Wane D, Lengacher CA. Integrative review of lycopene and breast cancer. Oncol Nurs Forum. 2006;33(1):127–37.

    Article  PubMed  Google Scholar 

  78. Zick SM, Colacino J, Cornellier M, Khabir T, Surnow K, Djuric Z. Fatigue reduction diet in breast cancer survivors: a pilot randomized clinical trial. Breast Cancer Res Treat. 2017;161(2):299–310.

    Article  CAS  PubMed  Google Scholar 

  79. Assar EA, Vidalle MC, Chopra M, Hafizi S. Lycopene acts through inhibition of IkappaB kinase to suppress NF-kappaB signaling in human prostate and breast cancer cells. Tumour Biol. 2016;37(7):9375–85.

    Article  PubMed  Google Scholar 

  80. Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, et al. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis. 2013;34(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  81. Bailly C, Gao J. Erinacine A and related cyathanediterpenoids: Molecular diversity and mechanisms underlying their neuroprotection and anticancer activities. Pharmacol Res. 2020;159: 104953.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta P, Srivastava SK. HER2 mediated de novo production of TGFβ leads to SNAIL driven epithelial-to-mesenchymal transition and metastasis of breast cancer. MolOncol. 2014;8(8):1532–47.

    CAS  Google Scholar 

  83. Dittharot K, Dakeng S, Suebsakwong P, Suksamrarn A, Patmasiriwat P, Promkan M. Cucurbitacin B induces hypermethylation of oncogenes in breast cancer cells. Planta Med. 2019;85(5):370–8.

    Article  CAS  PubMed  Google Scholar 

  84. Liang J, Zhang XL, Yuan JW, Zhang HR, Liu D, Hao J, et al. Cucurbitacin B inhibits the migration and invasion of breast cancer cells by altering the biomechanical properties of cells. Phytother Res. 2019;33(3):618–30.

    CAS  PubMed  Google Scholar 

  85. Jiao L, Wang S, Zheng Y, Wang N, Yang B, Wang D, et al. Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway. BiochemPharmacol. 2019;161:149–62.

    CAS  Google Scholar 

  86. Luo R, Fang D, Chu P, Wu H, Zhang Z, Tang Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed Pharmacother. 2016;84:1321–30.

    Article  CAS  PubMed  Google Scholar 

  87. Mertens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a: ZBTB10. MolCarcinog. 2013;52(8):591–602.

    Article  CAS  Google Scholar 

  88. Godugu C, Patel AR, Doddapaneni R, Somagoni J, Singh M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS ONE. 2014;9(3): e89919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Choudhury P, Dutta KN, Singh A, Malakar D, Pillai M, Talukdar NC, et al. Assessment of nutritional value and quantitative analysis of bioactive phytochemicals through targeted LC-MS/MS method in selected scented and pigmented rice varietals. J Food Sci. 2020;85(6):1781–92.

    Article  CAS  PubMed  Google Scholar 

  90. Mondal A, Banerjee S, Bose S, Das PP, Sandberg EN, Atanasov AG, et al. Cancer preventive and therapeutic potential of banana and its bioactive constituents: a systematic, comprehensive, and mechanistic review. Front Oncol. 2021;11: 697143.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Choudhury P, Dutta KN, Dev PK, Talukdar NC, Samanta SK, Devi R. Quantitative analysis of bio-active phytochemical (s) in selected scented rice varieties (Oryza sativa) reveals its intake towards advantage against metabolic disorders. IJTK. 2021;20(1):210–20.

    Google Scholar 

  92. Shin WK, Lee HW, Shin A, Lee JK, Lee SA, Lee JE, et al. Multi-grain rice diet decreases risk of breast cancer in korean women: results from the health examinees study. Nutrients. 2020;12(8):2273.

    Article  PubMed Central  Google Scholar 

  93. Gogoi B, Gogoi D, Gogoi N, Mahanta S, Buragohain AK. Network pharmacology based high throughput screening for identification of multi targeted antidiabetic compound from traditionally used plants. J Biomol Struct Dyn. 2021. https://doi.org/10.1080/07391102.2021.1905554.

    Article  PubMed  Google Scholar 

  94. Bastikar VA, Bastikar AV, Chhajed SS. Understanding the role of natural medicinal compounds such as Curcumin and allicin against SARS-CoV-2 proteins as potential treatment against COVID-19: an in silico approach. J Proteom Bioinform. 2020;13(7):1–14. https://doi.org/10.3524/0974-276X.1000510.

    Article  Google Scholar 

  95. Alam S, Khan F. Virtual screening, docking, ADMET and system pharmacology studies on garcinia caged xanthone derivatives for anticancer activity. Sci Rep. 2018;8(1):1–16. https://doi.org/10.1038/s41598-018-23768-7.

    Article  CAS  Google Scholar 

  96. Gogoi N, Chetia D, Gogoi B, Das A. Multiple-targets directed screening of flavonoid compounds from citrus species to find out antimalarial lead with predicted mode of action: an in silico and whole cell-based in vitro approach. Curr Comput Aid Drug Des. 2021;17(1):69–82.

    CAS  Google Scholar 

  97. Geffken K, Spiegel S. Sphingosine kinase 1 in breast cancer. Adv Biol Regul. 2018;67:59–65.

    Article  CAS  PubMed  Google Scholar 

  98. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.

    Article  PubMed  Google Scholar 

  99. Kong X, Liu Z, Cheng R, Sun L, Huang S, Fang Y, et al. Variation in breast cancer subtype incidence and distribution by race/ethnicity in the United States From 2010 to 2015. JAMA Netw Open. 2020;3(10): e2020303.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bahadoran Z, Karimi Z, Houshiar-rad A, Mirzayi HR, Rashidkhani B. Dietary phytochemical index and the risk of breast cancer: a case control study in a population of Iranian women. Asian Pac J Cancer Prev. 2013;14(5):2747–51.

    Article  PubMed  Google Scholar 

  101. Fung TT, Chiuve SE, Willett WC, Hankinson SE, Hu FB, Holmes MD. Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. Breast Cancer Res Treat. 2013;138(3):925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sangaramoorthy M, Koo J, John EM. Intake of bean fiber, beans, and grains and reduced risk of hormone receptor-negative breast cancer: the San Francisco Bay Area Breast Cancer Study. Cancer Med. 2018;7(5):2131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8.

    Article  CAS  PubMed  Google Scholar 

  104. Sarma PP, Gurumayum N, Verma AK, Devi R. A pharmacological perspective of banana: implications relating to therapeutic benefits and molecular docking. Food Funct. 2021;12:4749–67.

    Article  CAS  PubMed  Google Scholar 

  105. Kumari S, Katare PB, Elancharan R, Nizami HL, Paramesha B, Arava S, et al. Musa balbisiana fruit rich in polyphenols attenuates isoproterenol-induced cardiac hypertrophy in rats via inhibition of inflammation and oxidative stress. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/7147498.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Paluch-Shimon S, Cardoso F, Sessa C. Balmana J, Cardoso MJ, Gilbert F, Senkus E, ESMO Guidelines Committee. Prevention and screening in BRCA mutation carriers and otncher breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol. 2016;27:103–110.

  107. Balmana J, Diez O, Rubio IT, Cardoso F, ESMO Guidelines Working Group. BRCA in breast cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2011;22(Suppl 6):31–4.

  108. Jung M, Russell AJ, Liu B, George J, Liu PY, Liu T, et al. A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res. 2017;77:971–81.

    Article  CAS  PubMed  Google Scholar 

  109. Elizalde PV, Cordo Russo RI, Chervo MF, Schillaci R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer. 2016;23:243–57.

    Article  Google Scholar 

  110. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, et al. Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med. 2016;13: e1002201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Loibl S, Darb-Esfahani S, Huober J, Klimowicz A, Furlanetto J, Lederer B, et al. Integrated analysis of PTEN and p4EBP1 protein expression as predictors for pCR in HER2-positive breast cancer. Clin Cancer Res. 2016;22:2675–83.

    Article  CAS  PubMed  Google Scholar 

  112. Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, et al. Genomic characterization of primary invasive lobular breast cancer. J Clin Oncol. 2016;34:1872–81.

    Article  CAS  PubMed  Google Scholar 

  113. Inoue K, Fry EA. Aberrant expression of cyclin D1 in cancer. Signal Transduct Insights. 2015;4:1–13.

    CAS  Google Scholar 

  114. Varna M, Bousquet G, Plassa LF, Bertheau P, Janin A. TP53 status and response to treatment in breast cancers. J Biomed Biotechnol. 2011;2011: 284584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.

    Article  CAS  PubMed  Google Scholar 

  116. Kleiblova P, Stolarova L, Krizova K, Lhota F, Hojny J, Zemankova P, et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int J Cancer. 2019;145(7):1782–97.

    CAS  PubMed  Google Scholar 

  117. Cheng L, Zhou Z, Flesken-Nikitin A, Toshkov IA, Wang W, Camps J, et al. Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene. 2010;29:5700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roberts MR, Sucheston-Campbell LE, Zirpoli GR, Higgins M, Freudenheim JL, Bandera EV, et al. Single nucleotide variants in metastasis-related genes are associated with breast cancer risk, by lymph node involvement and estrogen receptor status, in women with European and African ancestry. Mol Carcinog. 2017;56:1000–9.

    Article  CAS  PubMed  Google Scholar 

  119. He J, Gu Y, Zhang S. Consumption of vegetables and fruits and breast cancer survival: a systematic review and meta-analysis. Sci Rep. 2017;7(1):599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

SKS is grateful for research support to the Council of Scientific and Industrial Research, New Delhi, India [CSIR/OM No. 13(9113-A)/2020-Pool]. PC is grateful to Lady Tata Memorial Trust (LTMT) for funding the human resources. The authors sincerely acknowledge to Dr. Eun-Ryeong Hahm, University of Pittsburgh, for her candid revision and critical edit of the final version of the manuscript. The authors are grateful to Dr. Raghuram Kandimalla, University of Louisville, for helping us in language editing. All the authors sincerely acknowledge the Department of Science and Technology (DST, GoI) and Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, providing the basic laboratory infrastructure and related facilities.

Author information

Authors and Affiliations

Authors

Contributions

SKS has conceptualized, designed, interpreted the results, and wrote the initial draft of the manuscript. BG and NG have been involved in molecular docking studies and data analysis. PC, PPS, and RD have contributed to further data verification and figure preparation. All the authors are involved in the manuscript preparation and approve the final version of the manuscript.

Corresponding authors

Correspondence to Suman Kumar Samanta or Rajlakshmi Devi.

Ethics declarations

Conflict of interest

Authors declare no financial or such type of competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S.K., Choudhury, P., Sarma, P.P. et al. Dietary phytochemicals/nutrients as promising protector of breast cancer development: a comprehensive analysis. Pharmacol. Rep 74, 583–601 (2022). https://doi.org/10.1007/s43440-022-00373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00373-0

Keywords

Navigation