Skip to main content

Advertisement

Log in

Arctigenin-mediated cell death of SK-BR-3 cells is caused by HER2 inhibition and autophagy-linked apoptosis

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Human epidermal growth factor receptor 2 (HER2) is well-known as the therapeutic marker in breast cancer. Therefore, we evaluated anti-cancer activity of arctigenin (ATG) on in SK-BR-3 HER2-overexpressing human breast cancer cells.

Methods

Cell viability and cytotoxicity were analyzed with MTT and colony-forming assay and cell cycle analysis was performed by flow cytometry. The expression and/or phosphorylation of proteins in whole cell lysate and mitochondrial fraction were analyzed by Western blotting. Cellular levels of LC3 and sequestosome 1 (SQSTM1/P62) were observed by immunofluorescence analysis.

Results

The result showed that ATG decreased cell viability of SK-BR-3 cells in a concentration-dependent manner. Moreover, ATG increased the sub G1 population linked to the suppression of HER2/EGFR1 signaling pathway. Furthermore, ATG increased the phosphorylation of H2AX and down-regulated RAD51 and survivin expressions, indicating that ATG induced DNA damage and inhibited the DNA repair system. We also found that cleavages of caspase-7 and PARP by releasing mitochondrial cytochrome c into the cytoplasm were induced by ATG treatment for 72 h through the reduction of Bcl-2 and Bcl-xL levels in mitochondria. In contrast, the levels of LC-3 and SQSTM1/P62 were increased by ATG for 24 h through the Akt/mTOR and AMPK signaling pathway.

Conclusions

Taken together, this study indicates that autophagy-linked apoptosis is responsible for the anti-cancer activity of ATG in SK-BR-3 cells, and suggests that ATG is considered a potential therapeutic for the treatment of HER2-overexpressing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATG:

Arctigenin

HER2:

Human epidermal growth factor receptor2

EGFR:

Epidermal growth factor receptor

p-H2A.X:

Phospho-histone 2A.X

PARP:

Poly (ADP-ribose) polymerase

Bcl-xL:

B-cell lymphoma-extra large

Bcl-2:

B-cell lymphoma-2

Cyt c:

Cytochrome c

AMPK:

AMP-activated protein kinase

mTOR:

Mammalian target of rapamycin

S6:

Ribosomal protein s6

S6K1:

S6 kinase1

LC-3:

Microtubule-associated proteins 1A/1B light chain 3 (LC-3)

SQSTM1/P62:

Sequestosome 1

References

  1. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69:438–51.

    Article  PubMed  Google Scholar 

  2. Abari AH, Tayebi M. Bioconversion of genistein to orobol by Bacillus subtilis spore displayed tyrosinase and monitoring the anticancer effects of orobol on MCF-7 breast cancer cells. Biotechnol Bioproc E. 2019;24:507–12.

    Article  CAS  Google Scholar 

  3. LS Jiwa PJ Diest van LD Hoefnagel J Wesseling P Wesseling Dutch Distant Breast Cancer Metastases. Upregulation of Claudin-4, CAIX and GLUT-1 in distant breast cancer metastases. BMC Cancer. 2014;14:864.

    Article  Google Scholar 

  4. Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999–2004. Cancer. 2008;112:737–47.

    Article  PubMed  Google Scholar 

  5. Lee MG, Lee KS, Nam KS. Anti-metastatic effects of arctigenin are regulated by MAPK/AP-1 signaling in 4T–1 mouse breast cancer cells. Mol Med Rep. 2020;21:1374–82.

    CAS  PubMed  Google Scholar 

  6. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilks ST. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast. 2015;24:548–55.

    Article  PubMed  Google Scholar 

  8. Lee JS, Yoon IS, Lee MS, Cha EY, Thuong PT, Diep TT, et al. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol Pharm Bull. 2013;36:316–25.

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5:77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18:977–84.

    Article  CAS  PubMed  Google Scholar 

  11. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther. 1999;21:309–18.

    Article  CAS  PubMed  Google Scholar 

  12. Vici P, Pizzuti L, Natoli C, Gamucci T, Di Lauro L, Barba M, et al. Triple positive breast cancer: a distinct subtype? Cancer Treat Rev. 2015;41:69–76.

    Article  CAS  PubMed  Google Scholar 

  13. Schedin TB, Borges VF, Shagisultanova E. Overcoming therapeutic resistance of triple positive breast cancer with CDK4/6 inhibition. Int J Breast Cancer. 2018;2018:7835095.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Montemurro F, Di Cosimo S, Arpino G. Human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor-positive breast cancer: new insights into molecular interactions and clinical implications. Ann Oncol. 2013;24:2715–24.

    Article  CAS  PubMed  Google Scholar 

  15. Akhtar MF, Saleem A, Rasul A, Faran Ashraf Baig MM, Bin-Jumah M, Abdel Daim MM. Anticancer natural medicines: an overview of cell signaling and other targets of anticancer phytochemicals. Eur J Pharmacol. 2020;888:173488.

    Article  CAS  PubMed  Google Scholar 

  16. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complement Alternat Med. 2018;2018:8324696.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin. 2018;39:787–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, et al. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res. 2006;66:1751–7.

    Article  CAS  PubMed  Google Scholar 

  19. Li QC, Liang Y, Tian Y, Hu GR. Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway. J Buon. 2016;21:87–94.

    PubMed  Google Scholar 

  20. Maxwell T, Lee KS, Kim S, Nam KS. Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. Int J Oncol. 2018;52:1339–49.

    CAS  PubMed  Google Scholar 

  21. Maxwell T, Chun SY, Lee KS, Kim S, Nam KS. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int J Oncol. 2017;50:727–35.

    Article  CAS  PubMed  Google Scholar 

  22. Lee KS, Lee MG, Kwon YS, Nam KS. Arctigenin enhances the cytotoxic effect of doxorubicin in MDA-MB-231 breast cancer cells. Int J Mol Sci. 2020;21(8):2997.

    Article  CAS  PubMed Central  Google Scholar 

  23. Bailey TA, Luan H, Clubb RJ, Naramura M, Band V, Raja SM, et al. Mechanisms of Trastuzumab resistance in ErbB2-driven breast cancer and newer opportunities to overcome therapy resistance. J Carcinog. 2011;10:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang SC, Chang SS, Chen CY. Identifying HER2 inhibitors from natural products database. PLoS ONE. 2011;6:e28793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li JZ, Wang HY, Li JJ, Bao JK, Wu CF. Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive breast cancer. Int J Mol Sci. 2016;17(7):1055.

    Article  PubMed Central  Google Scholar 

  26. Liu WH, Xu JM, Wu SP, Liu YL, Yu XP, Chen J, et al. Selective anti-proliferation of HER2- positive breast cancer cells by anthocyanins identified by High-Throughput screening. Plos One. 2013;8(12):e81586.

    Google Scholar 

  27. Gerard C, Goldbeter A. The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus. 2014;4(3): 20130075.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McDermott MSJ, Conlon N, Browne BC, Szabo A, Synnott NC, O'Brien NA, et al. HER2-targeted tyrosine kinase inhibitors cause therapy-induced-senescence in breast cancer cells. Cancers (Basel). 2019;11(2):197.

    Article  CAS  PubMed Central  Google Scholar 

  29. LaBonte MJ, Manegold PC, Wilson PM, Fazzone W, Louie SG, Lenz HJ, et al. The dual EGFR/HER-2 tyrosine kinase inhibitor lapatinib sensitizes colon and gastric cancer cells to the irinotecan active metabolite SN-38. Int J Cancer. 2009;125:2957–69.

    Article  CAS  PubMed  Google Scholar 

  30. Tang L, Wang Y, Strom A, Gustafsson JA, Guan X. Lapatinib induces p27(Kip1)-dependent G(1) arrest through both transcriptional and post-translational mechanisms. Cell Cycle. 2013;12:2665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plesca D, Mazumder S, Almasan A. DNA damage response and apoptosis. Methods Enzymol. 2008;446:107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene. 2004;23:2797–808.

    Article  CAS  PubMed  Google Scholar 

  33. Kajstura M, Halicka HD, Pryjma J, Darzynkiewicz Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry A. 2007;71:125–31.

    Article  PubMed  Google Scholar 

  34. Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucl Acids Res. 2012;40:5795–818.

    Article  CAS  PubMed  Google Scholar 

  35. Vequaud E, Desplanques G, Jezequel P, Juin P, Barille-Nion S. Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res Treat. 2016;155:53–63.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Nakada S, Ishiko T, Utsugisawa T, Datta R, Kharbanda S, et al. Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage. Mol Cell Biol. 1999;19:2986–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3:697–707.

    Article  CAS  PubMed  Google Scholar 

  38. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7(12):a006080.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014;21:39–49.

    Article  CAS  PubMed  Google Scholar 

  40. Lim J, Yang EJ, Chang JH. Cytotoxic effect of triglycerides via apoptotic caspase pathway in immune and non-immune cell lines. Biomed Sci Lett. 2019;25:66–74.

    Article  Google Scholar 

  41. Yu Y, Hou LY, Song HC, Xu PX, Sun Y, Wu K. Akt/AMPK/mTOR pathway was involved in the autophagy induced by vitamin E succinate in human gastric cancer SGC-7901 cells. Mol Cell Biochem. 2017;424:173–83.

    Article  CAS  PubMed  Google Scholar 

  42. Chang C-H, Lee C-Y, Lu C-C, Tsai F-J, Hsu Y-M, Tsao J-W, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: a key role of AMPK and Akt/mTOR signaling. Int J Oncol. 2017;50:873–82.

    Article  CAS  PubMed  Google Scholar 

  43. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    Article  CAS  PubMed  Google Scholar 

  44. Vegliante R, Ciriolo MR. Autophagy and autophagic cell death: uncovering new mechanisms whereby dehydroepiandrosterone promotes beneficial effects on human health. Vitam Horm. 2018;108:273–307.

    Article  CAS  PubMed  Google Scholar 

  45. Thorburn A. Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis. 2008;13:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhoopathi P, Chetty C, Gujrati M, Dinh DH, Rao JS, Lakka S. Cathepsin B facilitates autophagy-mediated apoptosis in SPARC overexpressed primitive neuroectodermal tumor cells. Cell Death Differ. 2010;17:1529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang SJ, Rhee WJ. Silkworm storage protein 1 inhibits autophagy-mediated apoptosis. Int J Mol Sci. 2019;20(2):318.

    Article  PubMed Central  Google Scholar 

  48. Fan Y, Chiu JF, Liu J, Deng Y, Xu C, Zhang J, et al. Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer. 2018;18:581.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant no. 2015R1D1A1A01058841).

Author information

Authors and Affiliations

Authors

Contributions

K-SN and K-SL designed the experiments. K-SN, M-GL and K-SL analyzed and interpreted data. M-GL performed the experiments and wrote the manuscript, which was approved by all authors.

Corresponding author

Correspondence to Kyung-Soo Nam.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MG., Lee, KS. & Nam, KS. Arctigenin-mediated cell death of SK-BR-3 cells is caused by HER2 inhibition and autophagy-linked apoptosis. Pharmacol. Rep 73, 629–641 (2021). https://doi.org/10.1007/s43440-021-00223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00223-5

Keywords

Navigation