Skip to main content

Advertisement

Log in

Perspective on the use of synthetic biology in rudimentary food fermentations

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Rudimentary food fermentation can be defined as a spontaneous process of conversion of food components through enzymatic action. A great variety of fermented foods are produced using spontaneous approaches; however, cocoa and coffee represent the most important agricultural commodities on international markets. As a manner to increase the efficiency of these processes, starter cultures have been developed and applied under field conditions. The selection process begins with the recovery of microbial strains from spontaneous fermentation through phenotypic and metabolic traits. Next, mutation-based breeding is used to develop and improve well-adapted starter cultures. With advances in synthetic biology, especially in the last decade, the development of robust cellular fabrications with high fermentative capacity has become easier—largely due to the development of genomic approaches, such as next-generation sequencing techniques, CRISPR-Cas system and bioinformatics tools. This review brings prospects on the use of synthetic biology to design new robust strains for use in cocoa and coffee fermentations, but which can be extended to other rudimentary foods. In addition, metabolic traits and target genes (e.g., UvrA, RecA, GPD1, and GPP2) are proposed as a starting point for the improvement of cocoa and coffee starters. Finally, the regulatory and safety requirements for these food crops are addressed. This review aims to stimulate research on the process of fermentation and the associated synthetic biology tools to produce fermented food efficiently and sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu L, Wang J, Levin MJ, Sinnott-Armstrong N, Zhao H, Zhao Y, Shao J, Di N, Zhang T. The origins of specialized pottery and diverse alcohol fermentation techniques in early neolithic China. Proc Natl Acad Sci U S A. 2019;116:12767–74. https://doi.org/10.1073/pnas.1902668116.

    Article  CAS  Google Scholar 

  2. Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: east meets west. Compr Rev Food Sci Food Saf. 2020;19:184–217. https://doi.org/10.1111/1541-4337.12520.

    Article  Google Scholar 

  3. Shoda S. Seeking prehistoric fermented food in Japan and Korea. Curr Anthropol. 2021;62:S242–55. https://doi.org/10.1086/715808.

    Article  Google Scholar 

  4. Craig OE. Prehistoric fermentation, delayed-return economies, and the adoption of pottery technology. Curr Anthropol. 2021;62:S233–41. https://doi.org/10.1086/716610.

    Article  Google Scholar 

  5. Soni S, Dey G. Perspectives on global fermented foods. Br Food J. 2014;116:1767–87. https://doi.org/10.1108/BFJ-01-2014-0032.

    Article  Google Scholar 

  6. Anal AK. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: a review. Fermentation. 2019;5:8. https://doi.org/10.3390/fermentation5010008.

    Article  CAS  Google Scholar 

  7. de Pereira GVM, de Carvalho Neto DP, Maske BL, de Dea Lindner J, Vale AS, Favero GR, Viesser J, de Carvalho JC, Góes-Neto A, Soccol CR. An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Crit Rev Food Sci Nutr. 2022;62:1870–89.

    Article  Google Scholar 

  8. Vale AS, Pereira GVM, Carvalho-Neto DP, Sorto RD, Goés-Neto A, Kato R, Soccol CR. Facility-specific ‘house’ microbiome ensures the maintenance of functional microbial communities into coffee beans fermentation: implications for source tracking. Environ Microbiol Rep. 2021;13:470–81. https://doi.org/10.1111/1758-2229.12921.

    Article  Google Scholar 

  9. Pacheco-Montealegre ME, Dávila-Mora LL, Botero-Rute LM, Reyes A, Caro-Quintero A. Fine resolution analysis of microbial communities provides insights into the variability of cocoa bean fermentation. Front Microbiol. 2020;11:650. https://doi.org/10.3389/fmicb.2020.00650.

    Article  Google Scholar 

  10. de Junqueira ACO, de Pereira GVM, Coral-Medina JD, Alvear MCR, Rosero R, de Carvalho-Neto DP, Enríquez HG, Soccol CR. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using illumina-based amplicon sequencing. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-45002-8.

    Article  Google Scholar 

  11. Tamang JP, Watanabe K, Holzapfel WH. Review: diversity of microorganisms in global fermented foods and beverages. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.00377.

    Article  Google Scholar 

  12. Pereira GVDM, de Carvalho-Neto DP, Junqueira ACDO, Karp SG, Letti LAJ, Magalhães-Júnior AI, Soccol CR. A review of selection criteria for starter culture development in the food fermentation industry. Food Rev Int. 2020;36:135–67.

    Article  Google Scholar 

  13. Cardinale S, Arkin AP. Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems. Biotechnol J. 2012;7:856–66.

    Article  CAS  Google Scholar 

  14. Chen B, Lee HL, Heng YC, Chua N, Teo WS, Choi WJ, Leong SSJ, Foo JL, Chang MW. Synthetic biology toolkits and applications in saccharomyces cerevisiae. Biotechnol Adv. 2018;36:1870–81.

    Article  CAS  Google Scholar 

  15. Kunjapur AM, Pfingstag P, Thompson NC. Gene synthesis allows biologists to source genes from farther away in the tree of life. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-06798-7.

    Article  Google Scholar 

  16. Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell. 2021;184:881–98.

    Article  CAS  Google Scholar 

  17. Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. Physiol Plant. 2021;173:624–38. https://doi.org/10.1111/ppl.13455.

    Article  CAS  Google Scholar 

  18. Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, et al. Synthetic biology for future food: research progress and future directions. Fut Foods. 2021;3:100025.

    Article  CAS  Google Scholar 

  19. Predan GMI, Lazăr DA, Lungu II. Cocoa industry-from plant cultivation to cocoa drinks production. In: Grumezescu AM, Holban AM, editors. Caffeinated and cocoa based beverages. Boca Raton: Academic Press; 2019. p. 489–507 (ISBN 9780128158647).

    Chapter  Google Scholar 

  20. International Cocoa Organization (ICCO) Data on Production and Grindings of Cocoa Beans Available online: https://www.icco.org/ accessed on 6 Jun 2022.

  21. Vásquez ZS, Carvalho DP, Pereira GVM, Vandenberghe LPS, de Oliveira PZ, Tiburcio PB, Rogez HLG, Góes A, Soccol CR. Biotechnological approaches for cocoa waste management: a review. Waste Manag. 2019;90:72–83. https://doi.org/10.1016/j.wasman.2019.04.030.

    Article  Google Scholar 

  22. Viesser JA, de Melo-Pereira GV, de Carvalho-Neto DP, Favero GR, de Carvalho JC, Goés-Neto A, Rogez H, Soccol CR. Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World J Microbiol Biotechnol. 2021. https://doi.org/10.1007/s11274-021-03079-2.

    Article  Google Scholar 

  23. Afoakwa EO. Chocolate science and technology. Chinchester: Wiley-Blackwell; 2010. (ISBN 9781405199063).

    Book  Google Scholar 

  24. Fowler MS. Cocoa beans: from tree to factory. 4th ed. Chinchester: Blackwell Publishing; 2009. (ISBN 1405139498 Beckett, S.T., Ed).

    Google Scholar 

  25. Papalexandratou Z, Kaasik K, Kauffmann LV, Skorstengaard A, Bouillon G, Espensen JL, Hansen LH, Jakobsen RR, Blennow A, Krych L, et al. Linking cocoa varietals and microbial diversity of nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int J Food Microbiol. 2019;304:106–18. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012.

    Article  CAS  Google Scholar 

  26. Figueroa-Hernández C, Mota-Gutierrez J, Ferrocino I, Hernández-Estrada ZJ, González-Ríos O, Cocolin L, Suárez-Quiroz ML. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int J Food Microbiol. 2019;301:41–50.

    Article  Google Scholar 

  27. De Vuyst L, Weckx S. The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J Appl Microbiol. 2016;121:5–17. https://doi.org/10.1111/jam.13045.

    Article  Google Scholar 

  28. De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev. 2020;44:432–53. https://doi.org/10.1093/femsre/fuaa014.

    Article  CAS  Google Scholar 

  29. Schwan RF, Wheals AE. The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr. 2004;44:205–21. https://doi.org/10.1080/10408690490464104.

    Article  CAS  Google Scholar 

  30. Illeghems K, de Vuyst L, Papalexandratou Z, Weckx S. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS ONE. 2012;7:e38040. https://doi.org/10.1371/journal.pone.0038040.

    Article  CAS  Google Scholar 

  31. Hamdouche Y, Meile JC, Lebrun M, Guehi T, Boulanger R, Teyssier C, Montet D. Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Res Int. 2019;119:477–91. https://doi.org/10.1016/j.foodres.2019.01.001.

    Article  CAS  Google Scholar 

  32. Pereira GVM, Magalhães-Guedes KT, Schwan RF. RDNA-based DGGE analysis and electron microscopic observation of cocoa beans to monitor microbial diversity and distribution during the fermentation process. Food Res Int. 2013;53:482–6. https://doi.org/10.1016/j.foodres.2013.05.030.

    Article  CAS  Google Scholar 

  33. Jespersen L, Nielsen D, Honholt S, Jakobsen M. Occurrence and diversity of yeasts involved in fermentation of west African cocoa beans. FEMS Yeast Res. 2005;5:441–53. https://doi.org/10.1016/j.femsyr.2004.11.002.

    Article  CAS  Google Scholar 

  34. Mota-Gutierrez J, Botta C, Ferrocino I, Giordano M, Bertolino M, Dolci P, Cannoni M, Cocolin L. Dynamics and biodiversity of bacterial and yeast communities during fermentation of cocoa beans. Appl Environ Microbiol. 2018;84:e01164-e1218. https://doi.org/10.1128/AEM.01164-18.

    Article  CAS  Google Scholar 

  35. Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L. Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res. 2009;9:774–83. https://doi.org/10.1111/j.1567-1364.2009.00520.x.

    Article  CAS  Google Scholar 

  36. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH. The microbiology of ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol. 2007;114:168–86. https://doi.org/10.1016/j.ijfoodmicro.2006.09.010.

    Article  CAS  Google Scholar 

  37. Serra JL, Moura FG, de Pereira GVM, Soccol CR, Rogez H, Darnet S. Determination of the microbial community in Amazonian cocoa bean fermentation by illumina-based metagenomic sequencing. Lwt. 2019;106:229–39. https://doi.org/10.1016/j.lwt.2019.02.038.

    Article  CAS  Google Scholar 

  38. Hernández-Hernández C, López-Andrade PA, Ramírez-Guillermo MA, Guerra Ramírez D, Caballero Pérez JF. Evaluation of different fermentation processes for use by small cocoa growers in Mexico. Food Sci Nutr. 2016;4:690–5. https://doi.org/10.1002/fsn3.333.

    Article  CAS  Google Scholar 

  39. Lefeber T, Papalexandratou Z, Gobert W, Camu N, De Vuyst L. On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiol. 2012;30:379–92. https://doi.org/10.1016/j.fm.2011.12.021.

    Article  CAS  Google Scholar 

  40. Hamdouche Y, Guehi T, Durand N, Kedjebo KBD, Montet D, Meile JC. Dynamics of microbial ecology during cocoa fermentation and drying: towards the identification of molecular markers. Food Control. 2015. https://doi.org/10.1016/j.foodcont.2014.05.031.

    Article  Google Scholar 

  41. Viesser JA, de Melo-Pereira GV, de Carvalho-Neto DP, Favero GR, de Carvalho JC, Goés-Neto A, Rogez H, Soccol CR. Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World J Microbiol Biotechnol. 2021;37:118. https://doi.org/10.1007/s11274-021-03079-2.

    Article  CAS  Google Scholar 

  42. Adler P, Bolten CJ, Dohnt K, Hansen CE, Wittmann C. Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Appl Environ Microbiol. 2013;79:5670–81. https://doi.org/10.1128/AEM.01483-13.

    Article  CAS  Google Scholar 

  43. Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol. 2007;73:1809–24. https://doi.org/10.1128/AEM.02189-06.

    Article  CAS  Google Scholar 

  44. Ho VTT, Zhao J, Fleet G. The effect of lactic acid bacteria on cocoa bean fermentation. Int J Food Microbiol. 2015;205:54–67. https://doi.org/10.1016/j.ijfoodmicro.2015.03.031.

    Article  CAS  Google Scholar 

  45. Oestreich-Janzen S. Chemistry of coffee. Elsevier Inc.; 2013. (ISBN 9780124095472).

    Google Scholar 

  46. de Pereira GVM, Soccol VT, Soccol CR. Current state of research on cocoa and coffee fermentations. Curr Opin Food Sci. 2016;7:50–7.

    Article  Google Scholar 

  47. Huch M, Franz CMAP. Coffee: fermentation and microbiota. Woodhead Publishing; 2015. (ISBN 9781782420156).

    Google Scholar 

  48. Elhalis H, Cox J, Zhao J. Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int J Food Microbiol. 2020. https://doi.org/10.1016/j.ijfoodmicro.2020.108544.

    Article  Google Scholar 

  49. Pereira TS, Batista NN, Santos-Pimenta LP, Martinez SJ, Ribeiro LS, Oliveira-Naves JA, Schwan RF. Self-induced anaerobiosis coffee fermentation: impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiol. 2022. https://doi.org/10.1016/j.fm.2021.103962.

    Article  Google Scholar 

  50. Pothakos V, De Vuyst L, Zhang SJ, De Bruyn F, Verce M, Torres J, Callanan M, Moccand C, Weckx S. Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Curr Res Biotechnol. 2020;2:1–15. https://doi.org/10.1016/j.crbiot.2020.02.001.

    Article  Google Scholar 

  51. Lee LW, Cheong MW, Curran P, Yu B, Liu SQ. Coffee fermentation and flavour—an intricate and delicate relationship. Food Chem. 2015;185:182–91. https://doi.org/10.1016/j.foodchem.2015.03.124.

    Article  CAS  Google Scholar 

  52. Evangelista SR, da Miguel MGCP, Silva CF, Pinheiro ACM, Schwan RF. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. Int J Food Microbiol. 2015;210:102–12. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008.

    Article  CAS  Google Scholar 

  53. Avallone S, Brillouet JM, Guyot B, Olguin E, Guiraud JP. Involvement of pectolytic micro-organisms in coffee fermentation. Int J Food Sci Technol. 2002;37:191–8. https://doi.org/10.1046/j.1365-2621.2002.00556.x.

    Article  CAS  Google Scholar 

  54. Djossou O, Perraud-Gaime I, Mirleau FL, Rodriguez-Serrano G, Karou G, Niamke S, Ouzari I, Boudabous A, Roussos S. Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius. Anaerobe. 2011;17:267–72. https://doi.org/10.1016/j.anaerobe.2011.03.006.

    Article  Google Scholar 

  55. de Pereira GVM, de Carvalho-Neto DP, Medeiros ABP, Soccol VT, Neto E, Woiciechowski AL, Soccol CR. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int J Food Sci Technol. 2016;51:1689–95. https://doi.org/10.1111/ijfs.13142.

    Article  CAS  Google Scholar 

  56. de Carvalho-Neto DP, de Melo-Pereira GV, Finco AMO, Letti LAJ, da Silva BJG, Vandenberghe LPS, Soccol CR. Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: kinetic metabolic and sensorial studies. Food Biosci. 2018;26:80–7. https://doi.org/10.1016/j.fbio.2018.10.005.

    Article  CAS  Google Scholar 

  57. de Pereira GVM, da Silva-Vale A, de Carvalho-Neto DP, Muynarsk ES, Soccol VT, Soccol CR. Lactic acid bacteria: what coffee industry should know? Curr Opin Food Sci. 2020;31:1–8.

    Article  Google Scholar 

  58. De Bruyn F, Zhang SJ, Pothakos V, Torres J, Lambot C, Moroni AV, Callanan M, Sybesma W, Weckx S, Vuyst LD. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl Environ Microbiol. 2017;83:e02398-e2416 (0099-2240).

    Article  Google Scholar 

  59. de Pereira GVM, de Carvalho-Neto DP, Magalhães-Júnior AI, Vásquez ZS, Medeiros ABP, Vandenberghe LPS, Soccol CR. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—a review. Food Chem. 2019;272:441–52.

    Article  Google Scholar 

  60. Hazelwood LA, Daran JM, Van Maris AJA, Pronk JT, Dickinson JR. The ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–66. https://doi.org/10.1128/AEM.02625-07.

    Article  CAS  Google Scholar 

  61. Bachmann H, Pronk JT, Kleerebezem M, Teusink B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol. 2015;32:1–7.

    Article  Google Scholar 

  62. Bizaj E, Cordente AG, Bellon JR, Raspor P, Curtin CD, Pretorius IS. A breeding strategy to harness flavor diversity of saccharomyces interspecific hybrids and minimize hydrogen sulfide production. FEMS Yeast Res. 2012;12:456–65. https://doi.org/10.1111/j.1567-1364.2012.00797.x.

    Article  CAS  Google Scholar 

  63. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38:947–95. https://doi.org/10.1111/1574-6976.12073.

    Article  CAS  Google Scholar 

  64. Schwan RF, Cooper RM, Wheals AE. Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts. Enzyme Microb Technol. 1997;21:234.

    Article  CAS  Google Scholar 

  65. Leal GA, Gomes LH, Efraim P, de Almeida Tavares FC, Figueira A. Fermentation of cacao (Theobroma cacao L) Seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes. FEMS Yeast Res. 2008;8:788–98. https://doi.org/10.1111/j.1567-1364.2008.00405.x.

    Article  CAS  Google Scholar 

  66. Meersman E, Steensels J, Paulus T, Struyf N, Saels V, Mathawan M, Koffi J, Vrancken G, Verstrepena KJ. Breeding strategy to generate robust yeast starter cultures for cocoa pulp fermentations. Appl Environ Microbiol. 2015;81:6166–76. https://doi.org/10.1128/AEM.00133-15.

    Article  CAS  Google Scholar 

  67. Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 2019;37:817–37.

    Article  CAS  Google Scholar 

  68. Liu L, Guan N, Li J, Shin HD, Du G, Chen J. Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Crit Rev Biotechnol. 2017;37:139–50.

    Article  CAS  Google Scholar 

  69. Markham KA, Alper HS. Synthetic biology expands the industrial potential of yarrowia lipolytica. Trends Biotechnol. 2018;36:1085–95.

    Article  CAS  Google Scholar 

  70. Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, Benites V, de Raad M, Northen TR, Deng K, et al. Lessons from two design-build-test-learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synth Biol. 2019;8:1337–51. https://doi.org/10.1021/acssynbio.9b00020.

    Article  CAS  Google Scholar 

  71. Kong LH, Xiong ZQ, Song X, Xia YJ, Zhang N, Ai LZ. Characterization of a panel of strong constitutive promoters from Streptococcus thermophilus for fine-tuning gene expression. ACS Synth Biol. 2019;8:1469–72. https://doi.org/10.1021/acssynbio.9b00045.

    Article  CAS  Google Scholar 

  72. Son J, Jeong KJ. Recent advances in synthetic biology for the engineering of lactic acid bacteria. Biotechnol Bioprocess Eng. 2020;25:962–73.

    Article  CAS  Google Scholar 

  73. Monteiro LMO, Arruda LM, Silva-Rocha R. Emergent properties in complex synthetic bacterial promoters. ACS Synth Biol. 2018;7:602–12. https://doi.org/10.1021/acssynbio.7b00344.

    Article  CAS  Google Scholar 

  74. Kiesenhofer DP, Mach RL, Mach-Aigner AR. Influence of cis element arrangement on promoter strength in Trichoderma reesei. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.

    Article  Google Scholar 

  75. Westmann CA, de Alves LF, Silva-Rocha R, Guazzaroni ME. Mining novel constitutive promoter elements in soil metagenomic libraries in Escherichia coli. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01344.

    Article  Google Scholar 

  76. Lee D, Lloyd NDR, Pretorius IS, Borneman AR. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb Cell Factories. 2016. https://doi.org/10.1186/s12934-016-0446-2.

    Article  Google Scholar 

  77. Salem FH, Lebrun M, Mestres C, Sieczkowski N, Boulanger R, Collignan A. Transfer kinetics of labeled aroma compounds from liquid media into coffee beans during simulated wet processing conditions. Food Chem. 2020. https://doi.org/10.1016/j.foodchem.2020.126779.

    Article  Google Scholar 

  78. Barrangou R, Marraffini LA. CRISPR-cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54:234–44.

    Article  CAS  Google Scholar 

  79. Song X, Zhang X, Xiong Y, Qiang Z, Liu X, Xia YJ, Wang SJ, Ai LZ. CRISPR–cas-mediated gene editing in lactic acid bacteria. Mol Biol Rep. 2020;47:8133–44.

    Article  CAS  Google Scholar 

  80. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.

    Article  CAS  Google Scholar 

  81. Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The off-targets of clustered regularly interspaced short palindromic repeats gene editing. Front Cell Dev Biol. 2021;9:718466.

    Article  Google Scholar 

  82. Shen W, Zhang J, Geng B, Qiu M, Hu M, Yang Q, Bao W, Xiao Y, Zheng Y, Peng W, et al. Establishment and application of a CRISPR-cas12a assisted genome-editing system in Zymomonas mobilis. Microb Cell Factories. 2019. https://doi.org/10.1186/s12934-019-1219-5.

    Article  Google Scholar 

  83. Muysson J, Miller L, Allie R, Inglis DL. The use of CRISPR-Cas9 genome editing to determine the importance of glycerol uptake in wine yeast during icewine fermentation. Fermentation. 2019. https://doi.org/10.3390/fermentation5040093.

    Article  Google Scholar 

  84. Jensen ED, Ferreira R, Jakočiunas T, Arsovska D, Zhang J, Ding L, Smith JD, David F, Nielsen J, Jensen MK, et al. Transcriptional reprogramming in yeast using DCas9 and combinatorial GRNA strategies. Microb Cell Factories. 2017. https://doi.org/10.1186/s12934-017-0664-2.

    Article  Google Scholar 

  85. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer PRE, Lin S, Kiani S, Guzman CD, Wiegand DJ, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8. https://doi.org/10.1038/nmeth.3312.

    Article  CAS  Google Scholar 

  86. Muynarsk ESM, de Melo-Pereira GV, Mesa D, Thomaz-Soccol V, Carvalho JC, Pagnoncelli MGB, Soccol CR. Draft genome sequence of Pediococcus acidilactici strain LPBC161, isolated from mature coffee cherries during natural fermentation. Microbiol Resour Announc. 2019. https://doi.org/10.1128/mra.00332-19.

    Article  Google Scholar 

  87. Illeghems K, de Vuyst L, Weckx S. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-1927-0.

    Article  Google Scholar 

  88. Illeghems K, de Vuyst L, Weckx S. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics. 2013. https://doi.org/10.1186/1471-2164-14-526.

    Article  Google Scholar 

  89. Bauer FF, Pretorius IS. Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. SAJEV. 2000. https://doi.org/10.21548/21-1-3557.

    Article  Google Scholar 

  90. Elhalis H, Cox J, Frank D, Zhao J. Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans. LWT. 2021. https://doi.org/10.1016/j.lwt.2020.110430.

    Article  Google Scholar 

  91. de Pereira GVM, da Miguel MGCP, Ramos CL, Schwan RF. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol. 2012;78:5395–405. https://doi.org/10.1128/AEM.01144-12.

    Article  CAS  Google Scholar 

  92. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int J Food Microbiol. 2016;216:69–78. https://doi.org/10.1016/j.ijfoodmicro.2015.09.004.

    Article  CAS  Google Scholar 

  93. Díaz-Muñoz C, de Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol. 2021;133:39–66.

    Article  Google Scholar 

  94. Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Gonçalves P, Sampaio JP. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr Biol. 2016;26:2750–61. https://doi.org/10.1016/j.cub.2016.08.040.

    Article  CAS  Google Scholar 

  95. Kostopoulou A, Batrinou A. Of gene expression of saccharomyces cerevisiae under osmotic stress in fermentation processes; Article, 2018; Vol. 13.

  96. de Pereira GVM, Neto E, Soccol VT, Medeiros ABP, Woiciechowski AL, Soccol CR. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: growth, metabolic analyses and sensorial effects. Food Res Int. 2015;75:348–56. https://doi.org/10.1016/j.foodres.2015.06.027.

    Article  CAS  Google Scholar 

  97. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria, 82; 2002.

  98. Grinholc M, Rodziewicz A, Forys K, Rapacka-Zdonczyk A, Kawiak A, Domachowska A, Golunski G, Wolz C, Mesak L, Becker K, et al. Fine-tuning RecA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Appl Microbiol Biotechnol. 2015;99:9161–76. https://doi.org/10.1007/s00253-015-6863-z.

    Article  CAS  Google Scholar 

  99. Zheng Y, Wang J, Bai X, Chang Y, Mou J, Song J, Wang M. Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Appl Microbiol Biotechnol. 2018;102:6493–502. https://doi.org/10.1007/s00253-018-9066-6.

    Article  CAS  Google Scholar 

  100. Samagaci L, Ouattara H, Niamké S, Lemaire M. Pichia kudrazevii and candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Res Int. 2016;89:773–80. https://doi.org/10.1016/j.foodres.2016.10.007.

    Article  CAS  Google Scholar 

  101. Silva CF, Vilela DM, de Souza Cordeiro C, Duarte WF, Dias DR, Schwan RF. Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J Microbiol Biotechnol. 2013;29:235–47. https://doi.org/10.1007/s11274-012-1175-2.

    Article  CAS  Google Scholar 

  102. de Pereira GVM, Soccol VT, Pandey A, Medeiros ABP, Andrade-Lara JMR, Gollo AL, Soccol CR. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. Int J Food Microbiol. 2014;188:60–6. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008.

    Article  CAS  Google Scholar 

  103. Delgado-Ospina J, Triboletti S, Alessandria V, Serio A, Sergi M, Paparella A, Rantsiou K, Chaves-López C. Functional biodiversity of yeasts isolated from Colombian fermented and dry cocoa beans. Microorganisms. 2020;8:1–17. https://doi.org/10.3390/microorganisms8071086.

    Article  CAS  Google Scholar 

  104. de Junqueira ACO, de Vinícius-Melo PG, Viesser JA, de Carvalho-Neto DP, Querne LBP, Soccol CR. Isolation and selection of fructose-consuming lactic acid bacteria associated with coffee bean fermentation. Food Biotechnol. 2022;36:58–75. https://doi.org/10.1080/08905436.2021.2007119.

    Article  CAS  Google Scholar 

  105. Ouattara HG, Elias RJ, Dudley EG. Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon. 2020. https://doi.org/10.1016/j.heliyon.2020.e03269.

    Article  Google Scholar 

  106. Lee AH, Neilson AP, O’Keefe SF, Ogejo JA, Huang H, Ponder M, Chu HSS, Jin Q, Pilot G, Stewart AC. A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. Eur Food Res Technol. 2019;245:511–9. https://doi.org/10.1007/s00217-018-3171-8.

    Article  CAS  Google Scholar 

  107. Lefeber T, Janssens M, Camu N, de Vuyst L. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl Environ Microbiol. 2010;76:7708–16. https://doi.org/10.1128/AEM.01206-10.

    Article  CAS  Google Scholar 

  108. Zeng X, Jiang H, Yang G, Ou Y, Lu S, Jiang J, Lei R, Su L. Regulation and management of the biosecurity for synthetic biology. Syn Syst Biotechnol. 2022;7:784–90. https://doi.org/10.1016/j.synbio.2022.03.005.

    Article  Google Scholar 

  109. Laulund S, Wind A, Derkx P, Zuliani V. Regulatory and safety requirements for food cultures. Microorganisms. 2017;5:28. https://doi.org/10.3390/microorganisms5020028.

    Article  CAS  Google Scholar 

  110. Laranjo M, Elias M, Fraqueza MJ. The use of starter cultures in traditional meat products. J Food Qual. 2017;2017:1–18. https://doi.org/10.1155/2017/9546026.

    Article  CAS  Google Scholar 

  111. Teng TS, Chin YL, Chai KF, Chen WN. Fermentation for future food systems. EMBO Rep. 2021. https://doi.org/10.15252/embr.202152680.

    Article  Google Scholar 

  112. Li J, Zhao H, Zheng L, An W. Advances in synthetic biology and biosafety governance. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.598087.

    Article  Google Scholar 

  113. Sajid M, Stone SR, Kaur P. Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. Curr Res Biotechnol. 2021;3:260–8. https://doi.org/10.1016/j.crbiot.2021.07.002.

    Article  CAS  Google Scholar 

  114. Jagtap UB, Jadhav JP, Bapat VA, Pretorius IS. Synthetic biology stretching the realms of possibility in wine yeast research. Int J Food Microbiol. 2017;252:24–34. https://doi.org/10.1016/j.ijfoodmicro.2017.04.006.

    Article  CAS  Google Scholar 

  115. Alperstein L, Gardner JM, Sundstrom JF, Sumby KM, Jiranek V. Yeast Bioprospecting versus synthetic biology—which is better for innovative beverage fermentation? Appl Microbiol Biotechnol. 2020;104:1939–53. https://doi.org/10.1007/s00253-020-10364-x.

    Article  CAS  Google Scholar 

  116. Lallemand Sourvisiae Technical Data Sheet Available online: https://www.lallemandbrewing.com/wp-content/uploads/2019/09/LAL-TDS-Mascoma-Sourvisiae-Final-1.pdf accessed on 4 Jun 2022

  117. Morrissey JP, Etschmann MMW, Schrader J, de Billerbeck GM. Cell factory applications of the yeast Kluyveromyces Marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast. 2015;32:3–16. https://doi.org/10.1002/yea.3054.

    Article  CAS  Google Scholar 

  118. van Wyk N, Kroukamp H, Pretorius I. The smell of synthetic biology: engineering strategies for aroma compound production in yeast. Fermentation. 2018;4:54. https://doi.org/10.3390/fermentation4030054.

    Article  CAS  Google Scholar 

  119. Shukla P. Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian J Microbiol. 2019;59:401–9. https://doi.org/10.1007/s12088-019-00819-9.

    Article  Google Scholar 

  120. Randall A, Guye P, Gupta S, Duportet X, Weiss R. Design and connection of robust genetic circuits. Elsevier; 2011. p. 159–86.

    Google Scholar 

  121. Davenport BI, Tica J, Isalan M. Reducing metabolic burden in the PACEmid evolver system by remastering high-copy phagemid vectors. Eng Biol. 2022. https://doi.org/10.1049/enb2.12021.

    Article  Google Scholar 

  122. Kumar V, Hart AJ, Keerthiraju ER, Waldron PR, Tucker GA, Greetham D. Expression of mitochondrial cytochrome c oxidase chaperone gene (COX20) improves tolerance to weak acid and oxidative stress during yeast fermentation. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0139129.

    Article  Google Scholar 

  123. Tian H, Tan J, Zhang L, Gu X, Xu W, Guo X, Luo Y. Increase of stress resistance in Lactococcus lactis via a novel food-grade vector expressing a shsp gene from Streptococcus thermophilus. Braz J Microbiol. 2012;43:1157–64.

    Article  CAS  Google Scholar 

  124. Dank A, Smid EJ, Notebaart RA. CRISPR-cas genome engineering of esterase activity in Saccharomyces cerevisiae steers aroma formation. BMC Res Notes. 2018. https://doi.org/10.1186/s13104-018-3788-5.

    Article  Google Scholar 

  125. Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Appl Environ Microbiol. 2012;78:6068–77. https://doi.org/10.1128/AEM.01279-12.

    Article  CAS  Google Scholar 

  126. Pardo E, Rico J, Gil JV, Orejas M. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microb Cell Factories. 2015. https://doi.org/10.1186/s12934-015-0306-5.

    Article  Google Scholar 

  127. Mertens S, Gallone B, Steensels J, Herrera-Malaver B, Cortebeek J, Nolmans R, Saels V, Vyas VK, Verstrepen KJ. Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0209124.

    Article  Google Scholar 

  128. van Wyk N, Kroukamp H, Espinosa MI, von Wallbrunn C, Wendland J, Pretorius IS. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies. Int J Food Microbiol. 2020. https://doi.org/10.1016/j.ijfoodmicro.2020.108615.

    Article  Google Scholar 

Download references

Funding

This study is funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, 306421/2020-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ricardo Soccol.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Vale, A., de Melo Pereira, G.V., Santana, L.M. et al. Perspective on the use of synthetic biology in rudimentary food fermentations. Syst Microbiol and Biomanuf 3, 150–165 (2023). https://doi.org/10.1007/s43393-022-00131-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00131-6

Keywords

Navigation