Skip to main content

Advertisement

Log in

Bioactive peptides in fermented foods and their application: a critical review

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Bioactive peptides are released during the production of fermented dairy, vegetables, fruits, legumes, fish, and meat products. The proteolytic specificity of lactic acid bacteria, Bacillus spp., yeasts, and mold, apart from their ability to synthesize bioactive peptides, plays an important role in the generation of specific bioactive peptides in traditional fermented foods. Controlled fermentation using defined starter strains has been explored for the development of bioactive peptides enriched novel fermented foods with potential functionality. Bioactive peptides enriched foods exert diverse health benefits, such as antioxidant, antihypertensive, antidiabetic, and immunomodulatory effects. Bioactive peptides can be used as alternatives to synthetic compounds due to negligible side effects and high valuation in the nutraceutical and functional food market. However, challenges associated with the identification, quantification, organoleptic properties, and bioavailability of bioactive peptides need to be addressed before exploiting the potential of bioactive peptides in the functional food industry. In the present review, we have discussed the production of bioactive peptides in diverse fermented foods. Structural and sequence specificity of peptides and their effect on the expression of distinct health beneficial effects have been described. The potential of utilizing these bioactive peptides for the development of novel functional fermented foods is discussed. Recent advances in peptide identification, quantification, debittering of peptides, and increasing peptide bioavailability have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nutraceuticals Market Size & Share Report, 2021–2030. 2021. https://www.grandviewresearch.com/industry-analysis/nutraceuticals-market. Accessed 28 Jun 2022.

  2. Functional Food and Beverage Market Size | Global Report, 2028. 2020. https://www.fortunebusinessinsights.com/functional-foods-market-102269. Accessed 28 Jun 2022.

  3. Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 2019;11(8):1806. https://doi.org/10.3390/NU11081806.

    Article  CAS  Google Scholar 

  4. Dullius A, Rama GR, Giroldi M, Goettert MI, Lehn DN, Volken de Souza CF. Bioactive peptide production in fermented foods. In: Rai AK, Singh SP, Pandey A, Larroche C, Soccol CR, editors. Current developments in biotechnology and bioengineering. Amsterdam: Elsevier B.V.; 2022. p. 47–72. https://doi.org/10.1016/B978-0-12-823506-5.00009-6.

    Chapter  Google Scholar 

  5. Paul T, Mandal A, Mandal SM, Ghosh K, Mandal AK, Halder SK, Das A, Maji SK, Kati A, Mohapatra PKD, Pati BR, Mondal KC. Enzymatic hydrolyzed feather peptide, a welcoming drug for multiple-antibiotic-resistant Staphylococcus aureus: structural analysis and characterization. Appl Biochem Biotechnol. 2015;175:3371–86. https://doi.org/10.1007/S12010-015-1509-2.

    Article  CAS  Google Scholar 

  6. Sanjukta S, Kumari R, Sahoo D, Rai AK. Bioactive Peptides In Fermented Food Products: Production And Functionality. In: Rai AK, Appaiah KAA, editors. Bioactive compounds in fermented foods. New York: CRC Press; 2021. p. 95–119. https://doi.org/10.1201/9780429027413-6.

    Chapter  Google Scholar 

  7. Choi YH, Cho SS, Simkhada JR, Yoo JC. A novel thermotolerant and acidotolerant peptide produced by a Bacillus strain newly isolated from a fermented food (kimchi) shows activity against multidrug-resistant bacteria. Int J Antimicrob Agents. 2012;40:80–3. https://doi.org/10.1016/J.IJANTIMICAG.2012.03.019.

    Article  CAS  Google Scholar 

  8. Ohata M, Uchida S, Zhou L, Arihara K. Antioxidant activity of fermented meat sauce and isolation of an associated antioxidant peptide. Food Chem. 2016;194:1034–9. https://doi.org/10.1016/J.FOODCHEM.2015.08.089.

    Article  CAS  Google Scholar 

  9. Majumdar RK, Roy D, Bejjanki S, Bhaskar N. An overview of some ethnic fermented fish products of the Eastern Himalayan region of India. J Ethnic Foods. 2016;3:276–83. https://doi.org/10.1016/J.JEF.2016.12.003.

    Article  Google Scholar 

  10. Lee SY, Hur SJ. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 2017;228:506–17. https://doi.org/10.1016/J.FOODCHEM.2017.02.039.

    Article  CAS  Google Scholar 

  11. Chourasia R, Chiring Phukon L, Abedin MM, Sahoo D, Rai AK. Production and characterization of bioactive peptides in novel functional soybean chhurpi produced using Lactobacillus delbrueckii WS4. Food Chem. 2022;387: 132889. https://doi.org/10.1016/J.FOODCHEM.2022.132889.

    Article  CAS  Google Scholar 

  12. Chourasia R, Kumari R, Singh SP, Sahoo D, Rai AK. Characterization of native lactic acid bacteria from traditionally fermented chhurpi of Sikkim Himalayan region for the production of chhurpi cheese with enhanced antioxidant effect. LWT. 2022;154: 112801. https://doi.org/10.1016/J.LWT.2021.112801.

    Article  CAS  Google Scholar 

  13. Abedin MM, Chourasia R, Chiring Phukon L, Singh SP, Rai AK. Characterization of ACE inhibitory and antioxidant peptides in yak and cow milk hard chhurpi cheese of the Sikkim Himalayan region. Food Chemistry: X. 2022;13: 100231. https://doi.org/10.1016/J.FOCHX.2022.100231.

    Article  CAS  Google Scholar 

  14. Sanjukta S, Padhi S, Sarkar P, Singh SP, Sahoo D, Rai AK. Production, characterization and molecular docking of antioxidant peptides from peptidome of kinema fermented with proteolytic Bacillus spp. Food Res Int. 2021;141: 110161. https://doi.org/10.1016/J.FOODRES.2021.110161.

    Article  CAS  Google Scholar 

  15. Gallego M, Mora L, Escudero E, Toldrá F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int J Food Microbiol. 2018;276:71–8. https://doi.org/10.1016/J.IJFOODMICRO.2018.04.009.

    Article  CAS  Google Scholar 

  16. Mora L, Escudero E, Toldrá F. Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. Food Res Int. 2016;89:638–46. https://doi.org/10.1016/J.FOODRES.2016.09.016.

    Article  CAS  Google Scholar 

  17. Padhi S, Chourasia R, Kumari M, Singh SP, Rai AK. Production and characterization of bioactive peptides from rice beans using Bacillus subtilis. Bioresour Technol. 2022. https://doi.org/10.1016/J.BIORTECH.2022.126932.

    Article  Google Scholar 

  18. Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Comprehensive Rev Food Sci Food Saf. 2021;20:960–79. https://doi.org/10.1111/1541-4337.12680.

    Article  CAS  Google Scholar 

  19. Bioactive peptide market size. Trends and forecast to 2026. 2019. https://www.coherentmarketinsights.com/market-insight/bioactive-peptide-market-3018. Accessed 28 Jun 2022.

  20. Mora L, Gallego M, Reig M, Toldrá F. Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends Food Sci Technol. 2017;69:306–14. https://doi.org/10.1016/J.TIFS.2017.04.011.

    Article  CAS  Google Scholar 

  21. Chourasia R, Padhi S, Chiring Phukon L, Abedin MM, Singh SP, Rai AK. A potential peptide from soy cheese produced using Lactobacillus delbrueckii WS4 for effective inhibition of SARS-CoV-2 main protease and S1 glycoprotein. Front Mol Biosci. 2020. https://doi.org/10.3389/fmolb.2020.601753.

    Article  Google Scholar 

  22. Manguy J, Jehl P, Dillon ET, Davey NE, Shields DC, Holton TA. Peptigram: a web-based application for peptidomics data visualization. J Proteome Res. 2017;16:712–9. https://doi.org/10.1021/ACS.JPROTEOME.6B00751/SUPPL_FILE/PR6B00751_SI_002.TXT.

    Article  CAS  Google Scholar 

  23. Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme–inhibitory peptides. Comprehensive Rev Food Sci Food Saf. 2021;20:1150–87. https://doi.org/10.1111/1541-4337.12711.

    Article  CAS  Google Scholar 

  24. Abedin MM, Chiring Phukon L, Chourasia R, Sharma S, Sahoo D, Rai AK. Soybean-derived bioactive peptides and their health benefits. In: Li Y, Qi B, editors. Phytochemicals in Soybeans. New York: CRC Press; 2022. p. 455–74. https://doi.org/10.1201/9781003030294-20.

    Chapter  Google Scholar 

  25. Rai AK, Sanjukta S, Chourasia R, Bhat I, Bhardwaj PK, Sahoo D. Production of bioactive hydrolysate using protease, Β-glucosidase and Α-amylase of Bacillus spp. isolated from kinema. Bioresour Technol. 2017;235:358–65. https://doi.org/10.1016/j.biortech.2017.03.139.

    Article  CAS  Google Scholar 

  26. Nasri R, Abdelhedi O, Nasri M, Jridi M. Fermented protein hydrolysates: biological activities and applications. Curr Opin Food Sci. 2022;43:120–7. https://doi.org/10.1016/J.COFS.2021.11.006.

    Article  CAS  Google Scholar 

  27. Chourasia R, Phukon LC, Singh SP, Rai AK, Sahoo D. Role of enzymatic bioprocesses for the production of functional food and nutraceuticals. In: Singh SP, Pandey A, Singhania RR, Larroche C, Li Z, editors. Biomass, biofuels, biochemicals. Amsterdam: Elsevier; 2020. p. 309–34. https://doi.org/10.1016/B978-0-12-819820-9.00015-6.

    Chapter  Google Scholar 

  28. Shi Y, Wei G, Huang A. Simulated in vitro gastrointestinal digestion of traditional Chinese Rushan and Naizha cheese: Peptidome profiles and bioactivity elucidation. Food Res Int. 2021;142: 110201. https://doi.org/10.1016/J.FOODRES.2021.110201.

    Article  CAS  Google Scholar 

  29. Banihashemi SA, Nikoo M, Ghasempour Z, Ehsani A. Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatal Agric Biotechnol. 2020;29: 101798. https://doi.org/10.1016/J.BCAB.2020.101798.

    Article  Google Scholar 

  30. Romulo A, Surya R. Tempe: A traditional fermented food of Indonesia and its health benefits. Int J Gastron Food Sci. 2021;26: 100413. https://doi.org/10.1016/J.IJGFS.2021.100413.

    Article  Google Scholar 

  31. Zannou O, Agossou DJ, Miassi Y, Agani OB, Darino MA, Chabi IB, Euloge YK, Azokpota P, Koca I. Traditional fermented foods and beverages: indigenous practices of food processing in Benin Republic. Int J Gastron Food Sci. 2022;27: 100450. https://doi.org/10.1016/J.IJGFS.2021.100450.

    Article  Google Scholar 

  32. Barla F, Koyanagi T, Tokuda N, Matsui H, Katayama T, Kumagai H, Michihata T, Sasaki T, Tsuji A, Enomoto T. The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides. Biotechnol Rep. 2016;10:105–10. https://doi.org/10.1016/J.BTRE.2016.04.002.

    Article  Google Scholar 

  33. Liu R, Kim AH, Kwak MK, Kang SO. Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-Ko6 have activities against multidrug-resistant bacteria. Front Microbiol. 2017;8:761. https://doi.org/10.3389/FMICB.2017.00761/BIBTEX.

    Article  Google Scholar 

  34. Taniguchi M, Aida R, Saito K, Ochiai A, Takesono S, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean Natto extracts. J Biosci Bioeng. 2019;127:472–8. https://doi.org/10.1016/J.JBIOSC.2018.09.016.

    Article  CAS  Google Scholar 

  35. Baptista DP, Galli BD, Cavalheiro FG, Negrão F, Eberlin MN, Gigante ML. Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. Int Dairy J. 2018;87:75–83. https://doi.org/10.1016/j.idairyj.2018.08.001.

    Article  CAS  Google Scholar 

  36. Pritchard SR, Phillips M, Kailasapathy K. Identification of bioactive peptides in commercial Cheddar cheese. Food Res Int. 2010;43:1545–8. https://doi.org/10.1016/j.foodres.2010.03.007.

    Article  CAS  Google Scholar 

  37. Ortiz LCA, Darré M, Ortiz CM, Massolo JF, Vicente AR. Quality and yield of Ricotta cheese as affected by milk fat content and coagulant type. Int J Dairy Technol. 2018;71:340–6. https://doi.org/10.1111/1471-0307.12431.

    Article  CAS  Google Scholar 

  38. Demirci AS, Palabiyik I, Ozalp S, Sivri GT. Effect of using kefir in the formulation of traditional Tarhana. Food Sci Technol. 2019;39:358–64. https://doi.org/10.1590/fst.29817.

    Article  Google Scholar 

  39. Dahiya DK, Puniya AK. Isolation, molecular characterization and screening of indigenous lactobacilli for their abilities to produce bioactive conjugated linoleic acid (CLA). J Food Sci Technol. 2017;54:792–801. https://doi.org/10.1007/s13197-017-2523-x.

    Article  CAS  Google Scholar 

  40. You L, Yang C, Jin H, Kwok LY, Sun Z, Zhang H. Metagenomic features of traditional fermented milk products. LWT- Food Sci Technol. 2022;155: 112945. https://doi.org/10.1016/J.LWT.2021.112945.

    Article  CAS  Google Scholar 

  41. Izquierdo-González JJ, Amil-Ruiz F, Zazzu S, Sánchez-Lucas R, Fuentes-Almagro CA, Rodríguez-Ortega MJ. Proteomic analysis of goat milk kefir: Profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity. Food Chem. 2019;295:456–65. https://doi.org/10.1016/J.FOODCHEM.2019.05.178.

    Article  Google Scholar 

  42. Li H, Byrne K, Galiamov R, Mendoza-Porras O, Bose U, Howitt CA, Colgrave ML. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chem. 2018;254:302–8. https://doi.org/10.1016/J.FOODCHEM.2018.02.023.

    Article  CAS  Google Scholar 

  43. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition. 2011;27:244–52. https://doi.org/10.1016/J.NUT.2010.02.004.

    Article  CAS  Google Scholar 

  44. Zhao CJ, Hu Y, Schieber A, Gänzle M. Fate of ACE-inhibitory peptides during the bread-making process: quantification of peptides in sourdough, bread crumb, steamed bread and soda crackers. J Cereal Sci. 2013;57:514–9. https://doi.org/10.1016/J.JCS.2013.02.009.

    Article  CAS  Google Scholar 

  45. Apud GR, Vaquero MJR, Rollan G, Stivala MG, Fernández PA. Increase in antioxidant and antihypertensive peptides from Argentinean wines by Oenococcus oeni. Int J Food Microbiol. 2013;163:166–70. https://doi.org/10.1016/J.IJFOODMICRO.2013.02.003.

    Article  CAS  Google Scholar 

  46. Peñas E, Martínez-Villaluenga C, Pihlava JM, Frias J. Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality, content of bioactive compounds and antioxidant activity of sauerkrauts. LWT Food Sci Technol. 2015;61:463–70. https://doi.org/10.1016/J.LWT.2014.11.049.

    Article  Google Scholar 

  47. Chen MJ, Tu RJ, Wang SY. Asian Products. In: Toldrá F, Hui YH, Astiasarán I, Sebranek JG, Talon R, editors. Handbook of fermented meat and poultry. 2nd ed. New York: Wiley; 2014. p. 321–7. https://doi.org/10.1002/9781118522653.CH37.

    Chapter  Google Scholar 

  48. Anal AK. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: a review. Fermentation. 2019;8:5. https://doi.org/10.3390/FERMENTATION5010008.

    Article  Google Scholar 

  49. Zhu CZ, Zhang WG, Zhou GH, Xu XL. Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. J Sci Food Agric. 2016;96:99–108. https://doi.org/10.1002/JSFA.7065.

    Article  CAS  Google Scholar 

  50. FAO. Dairy production and products: Products. (2022). https://www.fao.org/dairy-production-products/products/en/. Accessed 14 Jun 2022.

  51. Tsermoula P, Khakimov B, Nielsen JH, Engelsen SB. Whey—the waste-stream that became more valuable than the food product. Trends Food Sci Technol. 2021;118:230–41. https://doi.org/10.1016/J.TIFS.2021.08.025.

    Article  CAS  Google Scholar 

  52. Padhi S, Sharma S, Sahoo D, Montet D, Rai AK. Potential of lactic acid bacteria as starter cultures for food fermentation and as producers of biochemicals for value addition. In: Ray RC, Paramithiotis S, de Carvalho Azevedo VA, Montet D, editors. Lactic acid bacteria in food biotechnology. Amsterdam: Elsevier; 2022. p. 281–304. https://doi.org/10.1016/B978-0-323-89875-1.00009-2.

    Chapter  Google Scholar 

  53. Borgonovi TF, Casarotti SN, Penna ALB. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. LWT. 2021;143: 111124. https://doi.org/10.1016/J.LWT.2021.111124.

    Article  CAS  Google Scholar 

  54. Jia W, Du A, Fan Z, Shi L. Novel insight into the transformation of peptides and potential benefits in brown fermented goat milk by mesoporous magnetic dispersive solid phase extraction-based peptidomics. Food Chem. 2022;389: 133110. https://doi.org/10.1016/J.FOODCHEM.2022.133110.

    Article  CAS  Google Scholar 

  55. Dharmisthaben P, Basaiawmoit B, Sakure A, Das S, Maurya R, Bishnoi M, Kondepudi KK, Hati S. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci. 2021;44: 101404. https://doi.org/10.1016/J.FBIO.2021.101404.

    Article  CAS  Google Scholar 

  56. Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol. 2007;50:521–42. https://doi.org/10.1590/S1516-89132007000300018.

    Article  CAS  Google Scholar 

  57. Mirzaei M, Shavandi A, Mirdamadi S, Soleymanzadeh N, Motahari P, Mirdamadi N, Moser M, Subra G, Alimoradi H, Goriely S. Bioactive peptides from yeast: a comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends Food Sci Technol. 2021;118:297–315. https://doi.org/10.1016/J.TIFS.2021.10.008.

    Article  CAS  Google Scholar 

  58. Maïworé J, Tatsadjieu Ngoune L, Piro-Metayer I, Montet D. Identification of yeasts present in artisanal yoghurt and traditionally fermented milks consumed in the northern part of Cameroon. Sci African. 2019;6: e00159. https://doi.org/10.1016/J.SCIAF.2019.E00159.

    Article  Google Scholar 

  59. Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, Rezende LCD, Pereira TMC, Campagnaro BP, de Pauw E, Vasquez EC, Quinton L. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: bioprospection of antihypertensive molecules. Food Chem. 2019;282:109–19. https://doi.org/10.1016/J.FOODCHEM.2019.01.010.

    Article  CAS  Google Scholar 

  60. Öztürk H, Akın N. Effect of ripening time on peptide dynamics and bioactive peptide composition in Tulum cheese. J Dairy Sci. 2021;104:3832–52. https://doi.org/10.3168/JDS.2020-19494.

    Article  Google Scholar 

  61. Miner-Williams WM, Stevens BR, Moughan PJ. Are intact peptides absorbed from the healthy gut in the adult human? Nutr Res Rev. 2014;27:308–29. https://doi.org/10.1017/S0954422414000225.

    Article  CAS  Google Scholar 

  62. Shen J, Hu M, Fan X, Ren Z, Portioli C, Yan X, Rong M, Zhou M. Extracellular domain of PepT1 interacts with TM1 to facilitate substrate transport. Structure. 2022;30:1035-1041.e3. https://doi.org/10.1016/J.STR.2022.04.011.

    Article  CAS  Google Scholar 

  63. Shimakura J, Terada T, Katsura T, Inui KI. Characterization of the human peptide transporter PEPT1 promoter: Sp1 functions as a basal transcriptional regulator of human PEPT1. Am J Physiol Gastrointest Liver Physiol. 2005;289:025. https://doi.org/10.1152/AJPGI.00025.2005.

    Article  Google Scholar 

  64. Martini S, Conte A, Tagliazucchi D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese. Int Dairy J. 2020;105: 104668. https://doi.org/10.1016/J.IDAIRYJ.2020.104668.

    Article  CAS  Google Scholar 

  65. Li Y, Sadiq FA, Liu TJ, Chen JC, He GQ. Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. J Funct Foods. 2015;16:278–88. https://doi.org/10.1016/J.JFF.2015.04.043.

    Article  CAS  Google Scholar 

  66. Gu Y, Li X, Liu H, Li Q, Xiao R, Dudu OE, Yang L, Ma Y. The impact of multiple-species starters on the peptide profiles of yoghurts. Int Dairy J. 2020;106: 104684. https://doi.org/10.1016/J.IDAIRYJ.2020.104684.

    Article  CAS  Google Scholar 

  67. Sosalagere C, Adesegun Kehinde B, Sharma P. Isolation and functionalities of bioactive peptides from fruits and vegetables: a review. Food Chem. 2022;366: 130494. https://doi.org/10.1016/J.FOODCHEM.2021.130494.

    Article  CAS  Google Scholar 

  68. Hor PK, Goswami D, Ghosh K, Takó M, Halder SK, Mondal KC. Preparation of rice fermented food using root of Asparagus racemosus as herbal starter and assessment of its nutrient profile. Syst Microbiol Biomanuf. 2021;2:147–56. https://doi.org/10.1007/S43393-021-00046-8.

    Article  Google Scholar 

  69. Ghosh K, Adak A, Halder SK, Mondal KC. Physicochemical characteristics and lactic acid bacterial diversity of an ethnic rice fermented mild alcoholic beverage, Haria. Front Sustain Food Syst. 2021;5:170. https://doi.org/10.3389/FSUFS.2021.680738/BIBTEX.

    Article  Google Scholar 

  70. Behera SS, el Sheikha AF, Hammami R, Kumar A. Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J Funct Foods. 2020;70: 103971. https://doi.org/10.1016/J.JFF.2020.103971.

    Article  CAS  Google Scholar 

  71. Fideler J, Johanningsmeier SD, Ekelöf M, Muddiman DC. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS. Food Chem. 2019;271:715–23. https://doi.org/10.1016/J.FOODCHEM.2018.07.187.

    Article  CAS  Google Scholar 

  72. Song J, Peng S, Yang J, Zhou F, Suo H. Isolation and identification of novel antibacterial peptides produced by Lactobacillus fermentum SHY10 in Chinese pickles. Food Chem. 2021;348: 129097. https://doi.org/10.1016/J.FOODCHEM.2021.129097.

    Article  CAS  Google Scholar 

  73. Daliri EBM, Lee BH, Kim JH, Oh DH. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT. 2018;93:88–93. https://doi.org/10.1016/J.LWT.2018.03.026.

    Article  CAS  Google Scholar 

  74. Jakubczyk A, Karaś M, Baraniak B, Pietrzak M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 2013;141:3774–80. https://doi.org/10.1016/J.FOODCHEM.2013.06.095.

    Article  CAS  Google Scholar 

  75. Rizzello CG, Tagliazucchi D, Babini E, Sefora Rutella G, Taneyo Saa DL, Gianotti A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J Funct Foods. 2016;27:549–69. https://doi.org/10.1016/J.JFF.2016.09.023.

    Article  CAS  Google Scholar 

  76. Wu Q, Du J, Jia J, Kuang C. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: hydrolysis kinetic, purification and molecular docking study. Food Chem. 2016;199:140–9. https://doi.org/10.1016/J.FOODCHEM.2015.12.012.

    Article  CAS  Google Scholar 

  77. Meng FB, Zhou L, Li JJ, Li YC, Wang M, Zou LH, Liu DY, Chen WJ. The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Res Int. 2022;157: 111416. https://doi.org/10.1016/J.FOODRES.2022.111416.

    Article  CAS  Google Scholar 

  78. Amadou I, Le GW, Amza T, Sun J, Shi YH. Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int. 2013;51:422–8. https://doi.org/10.1016/J.FOODRES.2012.12.045.

    Article  CAS  Google Scholar 

  79. Rizzello CG, Cassone A, Coda R, Gobbetti M. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem. 2011;127:952–9. https://doi.org/10.1016/J.FOODCHEM.2011.01.063.

    Article  CAS  Google Scholar 

  80. Corpuz HM, Fujii H, Nakamura S, Katayama S. Fermented rice peptides attenuate scopolamine-induced memory impairment in mice by regulating neurotrophic signaling pathways in the hippocampus. Brain Res. 2019;1720: 146322. https://doi.org/10.1016/J.BRAINRES.2019.146322.

    Article  CAS  Google Scholar 

  81. Wronkowska M, Rostek D, Lenkiewicz M, Kurantowicz E, Yaneva TG, Starowicz M. Oat flour fermented by Lactobacillus strains—kinetics of volatile compound formation and antioxidant capacity. J Cereal Sci. 2022;103: 103392. https://doi.org/10.1016/J.JCS.2021.103392.

    Article  CAS  Google Scholar 

  82. Hor PK, Pal S, Mondal J, Halder SK, Ghosh K, Santra S, Ray M, Goswami D, Chakrabarti S, Singh S, Dwivedi SK, Takó M, Bera D, Mondal KC. Antiobesity, antihyperglycemic, and antidepressive potentiality of rice fermented food through modulation of intestinal microbiota. Front Microbiol. 2022;13: 794503. https://doi.org/10.3389/FMICB.2022.794503.

    Article  Google Scholar 

  83. Wang Y, Sun H, Han B, Li HY, Liu XL. Improvement of nutritional value, molecular weight patterns (soluble peptides), free amino acid patterns, total phenolics and antioxidant activity of fermented extrusion pretreatment rapeseed meal with Bacillus subtilis YY-1 and Saccharomyces cerevisiae YY-2. LWT. 2022;160: 113280. https://doi.org/10.1016/J.LWT.2022.113280.

    Article  CAS  Google Scholar 

  84. He R, Ju X, Yuan J, Wang L, Girgih AT, Aluko RE. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res Int. 2012;49:432–8. https://doi.org/10.1016/J.FOODRES.2012.08.023.

    Article  CAS  Google Scholar 

  85. Pihlanto A, Johansson T, Mäkinen S. Inhibition of angiotensin I-converting enzyme and lipid peroxidation by fermented rapeseed and flaxseed meal. Eng Life Sci. 2012;12:450–6. https://doi.org/10.1002/ELSC.201100137.

    Article  CAS  Google Scholar 

  86. Wang X, Gao A, Chen Y, Zhang X, Li S, Chen Y. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chem. 2017;229:487–94. https://doi.org/10.1016/J.FOODCHEM.2017.02.121.

    Article  CAS  Google Scholar 

  87. Jakubczyk A, Karaś M, Złotek U, Szymanowska U, Baraniak B, Bochnak J. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT. 2019;105:306–13. https://doi.org/10.1016/J.LWT.2019.02.009.

    Article  CAS  Google Scholar 

  88. Mechmeche M, Ksontini H, Hamdi M, Kachouri F. Production of bioactive peptides in tomato seed protein isolate fermented by water kefir culture: optimization of the fermentation conditions. Int J Pept Res Ther. 2019;25:137–50. https://doi.org/10.1007/S10989-017-9655-8/FIGURES/6.

    Article  CAS  Google Scholar 

  89. Moayedi A, Mora L, Aristoy MC, Safari M, Hashemi M, Toldrá F. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem. 2018;250:180–7. https://doi.org/10.1016/J.FOODCHEM.2018.01.033.

    Article  CAS  Google Scholar 

  90. Zhao J, Gong L, Wu L, She S, Liao Y, Zheng H, Zhao Z, Liu G, Yan S. Immunomodulatory effects of fermented fig (Ficus carica L.) fruit extracts on cyclophosphamide-treated mice. J Funct Foods. 2020;75: 104219. https://doi.org/10.1016/J.JFF.2020.104219.

    Article  CAS  Google Scholar 

  91. Bravo FI, Mas-Capdevila A, López-Fernández-Sobrino R, Torres-Fuentes C, Mulero M, Alcaide-Hidalgo JM, Muguerza B. Identification of novel antihypertensive peptides from wine lees hydrolysate. Food Chem. 2022;366: 130690. https://doi.org/10.1016/J.FOODCHEM.2021.130690.

    Article  CAS  Google Scholar 

  92. Hashemi SMB, Jafarpour D, Jouki M. Improving bioactive properties of peach juice using Lactobacillus strains fermentation: antagonistic and anti-adhesion effects, anti-inflammatory and antioxidant properties, and Maillard reaction inhibition. Food Chem. 2021;365: 130501. https://doi.org/10.1016/J.FOODCHEM.2021.130501.

    Article  CAS  Google Scholar 

  93. Kong Y, Feng M, Sun J. Effects of Lactobacillus plantarum CD101 and Staphylococcus simulans NJ201 on proteolytic changes and bioactivities (antioxidant and antihypertensive activities) in fermented pork sausage. LWT. 2020;133: 109985. https://doi.org/10.1016/J.LWT.2020.109985.

    Article  CAS  Google Scholar 

  94. Dellafiora L, Paolella S, Dall’Asta C, Dossena A, Cozzini P, Galaverna G. Hybrid in silico/in vitro approach for the identification of angiotensin I converting enzyme inhibitory peptides from Parma dry-cured ham. J Agric Food Chem. 2015;63:6366–75. https://doi.org/10.1021/ACS.JAFC.5B02303.

    Article  CAS  Google Scholar 

  95. de Almeida MA, Saldaña E, da Silva Pinto JS, Palacios J, Contreras-Castillo CJ, Sentandreu MA, Fadda SG. A peptidomic approach of meat protein degradation in a low-sodium fermented sausage model using autochthonous starter cultures. Food Res Int. 2018;109:368–79. https://doi.org/10.1016/J.FOODRES.2018.04.042.

    Article  Google Scholar 

  96. Mejri L, Vásquez-Villanueva R, Hassouna M, Marina ML, García MC. Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sausages inoculated with different starter cultures and ripening times. Food Res Int. 2017;100:708–16. https://doi.org/10.1016/J.FOODRES.2017.07.072.

    Article  CAS  Google Scholar 

  97. Oh JY, Kim EA, Lee H, Kim HS, Lee JS, Jeon YJ. Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem. 2019;80:164–70. https://doi.org/10.1016/J.PROCBIO.2019.01.016.

    Article  CAS  Google Scholar 

  98. Yang D, Li C, Li L, Wang Y, Wu Y, Chen S, Zhao Y, Wei Y, Wang D. Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Res Int. 2022;157: 111211. https://doi.org/10.1016/J.FOODRES.2022.111211.

    Article  CAS  Google Scholar 

  99. Okeke ES, Ita RE, Egong EJ, Udofia LE, Mgbechidinma CL, Akan OD. Metaproteomics insights into fermented fish and vegetable products and associated microbes. Food Chem Mol Sci. 2021;3: 100045. https://doi.org/10.1016/J.FOCHMS.2021.100045.

    Article  CAS  Google Scholar 

  100. Zhi T, Li X, Sadiq FA, Mao K, Gao J, Mi S, Liu X, Deng W, Chitrakar B, Sang Y. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: preparation, purification, identification and characterization. LWT. 2022;164: 113636. https://doi.org/10.1016/J.LWT.2022.113636.

    Article  CAS  Google Scholar 

  101. Abd Rashid NY, Manan MA, Pa’ee KF, Saari N, Faizal Wong FW. Evaluation of antioxidant and antibacterial activities of fish protein hydrolysate produced from Malaysian fish sausage (Keropok Lekor) by-products by indigenous Lactobacillus casei fermentation. J Clean Prod. 2022;347: 131303. https://doi.org/10.1016/J.JCLEPRO.2022.131303.

    Article  CAS  Google Scholar 

  102. Sabeena Farvin KH, Baron CP, Nielsen NS, Otte J, Jacobsen C. Antioxidant activity of yoghurt peptides: part 2—characterisation of peptide fractions. Food Chem. 2010;123:1090–7. https://doi.org/10.1016/J.FOODCHEM.2010.05.029.

    Article  CAS  Google Scholar 

  103. Jakubczyk A, Karaś M, Złotek U, Szymanowska U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res Int. 2017;100:489–96. https://doi.org/10.1016/J.FOODRES.2017.07.046.

    Article  CAS  Google Scholar 

  104. Soleymanzadeh N, Mirdamadi S, Mirzaei M, Kianirad M. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking. Int Dairy J. 2019;97:201–8. https://doi.org/10.1016/J.IDAIRYJ.2019.05.012.

    Article  CAS  Google Scholar 

  105. Muhialdin BJ, Abdul Rani NF, Meor Hussin AS. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. LWT. 2020;131: 109776. https://doi.org/10.1016/J.LWT.2020.109776.

    Article  CAS  Google Scholar 

  106. Sato K, Miyasaka S, Tsuji A, Tachi H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem. 2018;261:51–6. https://doi.org/10.1016/J.FOODCHEM.2018.04.029.

    Article  CAS  Google Scholar 

  107. He Y, Bu L, Xie H, Liang G. Antioxidant activities and protective effects of duck embryo peptides against H2O2-induced oxidative damage in HepG2 cells. Poult Sci. 2019;98:7118–28. https://doi.org/10.3382/PS/PEZ430.

    Article  CAS  Google Scholar 

  108. Singh BP, Vij S. In vitro stability of bioactive peptides derived from fermented soy 108milk against heat treatment, pH and gastrointestinal enzymes. LWT Food Sci Technol. 2018;91:303–7. https://doi.org/10.1016/j.lwt.2018.01.066.

    Article  CAS  Google Scholar 

  109. Sanjukta S, Rai AK. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol. 2016;50:1–10. https://doi.org/10.1016/J.TIFS.2016.01.010.

    Article  CAS  Google Scholar 

  110. Begunova AV, Savinova OS, Glazunova OA, Moiseenko KV, Rozhkova IV, Fedorova TV. Development of antioxidant and antihypertensive properties during growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on cow’s milk: fermentation and peptidomics study. 2020. Foods. https://doi.org/10.3390/FOODS10010017.

  111. Wei G, Zhao Q, Wang D, Fan Y, Shi Y, Huang A. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking. LWT. 2022;159: 113196. https://doi.org/10.1016/J.LWT.2022.113196.

    Article  CAS  Google Scholar 

  112. Yang W, Hao X, Zhang X, Zhang G, Li X, Liu L, Sun Y, Pan Y. Identification of antioxidant peptides from cheddar cheese made with Lactobacillus helveticus. LWT. 2021;141: 110866. https://doi.org/10.1016/J.LWT.2021.110866.

    Article  CAS  Google Scholar 

  113. Lv R, Dong Y, Bao Z, Zhang S, Lin S, Sun N. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol. 2022;122:171–86. https://doi.org/10.1016/J.TIFS.2022.02.026.

    Article  CAS  Google Scholar 

  114. Forbes LV, Kettle AJ. A multi-substrate assay for finding physiologically effective inhibitors of myeloperoxidase. Analy Biochem. 2018;544:13–21. https://doi.org/10.1016/J.AB.2017.12.022.

    Article  CAS  Google Scholar 

  115. Tamura Y, Kumamaru H, Inami T, Matsubara H, Hirata K, Tsujino I, Suda R, Miyata H, Nishimura S, Sigel B, Takano M, Tatsumi K. Changes in the characteristics and initial treatments of pulmonary hypertension between 2008 and 2020 in Japan. JACC Asia. 2022;2:273–84. https://doi.org/10.1016/J.JACASI.2022.02.011.

    Article  Google Scholar 

  116. Adeyeye E, Kapil V, Lobo MD. Hypertension. Medicine. 2022;50:399–407. https://doi.org/10.1016/J.MPMED.2022.04.002.

    Article  Google Scholar 

  117. Rendón-Rosales MÁ, Torres-Llanez MJ, Mazorra-Manzano MA, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. LWT. 2022;154: 112581. https://doi.org/10.1016/J.LWT.2021.112581.

    Article  Google Scholar 

  118. Li H, Wu J, Wan J, Zhou Y, Zhu Q. Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. LWT. 2022;160: 113326. https://doi.org/10.1016/J.LWT.2022.113326.

    Article  CAS  Google Scholar 

  119. Daliri EBM, Tyagi A, Ofosu FK, Chelliah R, Kim JH, Kim JR, Yoo D, Oh DH. A discovery-based metabolomic approach using UHPLC Q-TOF MS/MS unveils a plethora of prospective antihypertensive compounds in Korean fermented soybeans. LWT. 2021;137: 110399. https://doi.org/10.1016/J.LWT.2020.110399.

    Article  CAS  Google Scholar 

  120. Wang F, Zhou B. Investigation of angiotensin-I-converting enzyme (ACE) inhibitory tri-peptides: a combination of 3D-QSAR and molecular docking simulations. RSC Adv. 2020;10:35811–9. https://doi.org/10.1039/D0RA05119E.

    Article  CAS  Google Scholar 

  121. Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients. 2017;9:316. https://doi.org/10.3390/NU9040316.

    Article  Google Scholar 

  122. Sun S, Xu X, Sun X, Zhang X, Chen X, Xu N. Preparation and identification of ACE inhibitory peptides from the marine Macroalga Ulva intestinalis. Mar Drugs. 2019;17:179. https://doi.org/10.3390/MD17030179.

    Article  CAS  Google Scholar 

  123. Ibrahim MA, Serem JC, Bester MJ, Neitz AW, Gaspar ARM. Multiple antidiabetic effects of three α-glucosidase inhibitory peptides, PFP, YPL and YPG: dipeptidyl peptidase–IV inhibition, suppression of lipid accumulation in differentiated 3T3-L1 adipocytes and scavenging activity on methylglyoxal. Int J Biol Macromol. 2019;122:104–14. https://doi.org/10.1016/J.IJBIOMAC.2018.10.152.

    Article  CAS  Google Scholar 

  124. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycemia in Type 2 diabetes, 2015: a patient-centered approach: Update to a position statement of the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care. 2015;38:140–9. https://doi.org/10.2337/DC14-2441.

    Article  Google Scholar 

  125. Valenzuela Zamudio F, Hidalgo-Figueroa SN, Ortíz Andrade RR, Hernández Álvarez AJ, Segura Campos MR. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chem. 2022;394: 133479. https://doi.org/10.1016/J.FOODCHEM.2022.133479.

    Article  CAS  Google Scholar 

  126. Ayyash M, Al-Dhaheri AS, Al Mahadin S, Kizhakkayil J, Abushelaibi A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. J Dairy Sci. 2018;101:900–11. https://doi.org/10.3168/jds.2017-13400.

    Article  CAS  Google Scholar 

  127. Gu Y, Li X, Chen H, Sun Y, Yang L, Ma Y, Yong Chan EC. Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier. Food Biosci. 2022;47: 101619. https://doi.org/10.1016/J.FBIO.2022.101619.

    Article  CAS  Google Scholar 

  128. Wang B, Yu Z, Yokoyama W, Chiou B, Chen M, Liu F, Zhong F. Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. Food Biosci. 2021;42: 101161. https://doi.org/10.1016/J.FBIO.2021.101161.

    Article  CAS  Google Scholar 

  129. Jin R, Shang J, Teng X, Zhang L, Liao M, Kang J, Meng R, Wang D, Ren H, Liu N. Characterization of DPP-IV inhibitory peptides using an in vitro cell culture model of the intestine. J Agric Food Chem. 2021;69:2711–8. https://doi.org/10.1021/ACS.JAFC.0C05880.

    Article  CAS  Google Scholar 

  130. Kęska P, Stadnik J. Potential DPP IV inhibitory peptides from dry-cured pork loins after hydrolysis: an in vitro and in silico study. Curr Issues Mol Biol. 2021;43:1335. https://doi.org/10.3390/CIMB43030095.

    Article  Google Scholar 

  131. Mourad AAE, Khodir AE, Saber S, Mourad MAE. Novel potent and selective DPP-4 inhibitors: design, synthesis and molecular docking study of dihydropyrimidine phthalimide hybrids. Pharmaceuticals. 2021;14:1–24. https://doi.org/10.3390/PH14020144.

    Article  Google Scholar 

  132. Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy. 2014;6:755–74. https://doi.org/10.2217/IMT.14.37.

    Article  CAS  Google Scholar 

  133. Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides—a promising source for novel functional food production and drug discovery. Peptides. 2022;148: 170696. https://doi.org/10.1016/J.PEPTIDES.2021.170696.

    Article  CAS  Google Scholar 

  134. Nielsen SD, Jakobsen LMA, Geiker NRW, Bertram HC. Chemically acidified, live and heat-inactivated fermented dairy yoghurt show distinct bioactive peptides, free amino acids and small compounds profiles. Food Chem. 2022;376: 131919. https://doi.org/10.1016/J.FOODCHEM.2021.131919.

    Article  CAS  Google Scholar 

  135. Fu L, Xing L, Hao Y, Yang Z, Teng S, Wei L, Zhang W. The anti-inflammatory effects of dry-cured ham derived peptides in RAW264.7 macrophage cells. J Funct Foods. 2021;87: 104827. https://doi.org/10.1016/J.JFF.2021.104827.

    Article  CAS  Google Scholar 

  136. Ma T, Li C, Zhao F, Cao J, Zhang X, Shen X. Effects of co-fermented collagen peptide-jackfruit juice on the immune response and gut microbiota in immunosuppressed mice. Food Chem. 2021;365: 130487. https://doi.org/10.1016/J.FOODCHEM.2021.130487.

    Article  CAS  Google Scholar 

  137. Masotti AI, Buckley N, Champagne CP, Green-Johnson J. Immunomodulatory bioactivity of soy and milk ferments on monocyte and macrophage models. Food Res Int. 2011;44:2475–81. https://doi.org/10.1016/J.FOODRES.2011.02.004.

    Article  CAS  Google Scholar 

  138. Nwachukwu ID, Aluko RE. Anticancer and antiproliferative properties of food-derived protein hydrolysates and peptides. J Food Bioactives. 2019;7:18–26. https://doi.org/10.31665/JFB.2019.7194.

    Article  Google Scholar 

  139. Ayyash M, Johnson SK, Liu SQ, Mesmari N, Dahmani S, Al Dhaheri AS, Kizhakkayil J. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp. Food Chem. 2019;275:50–8. https://doi.org/10.1016/J.FOODCHEM.2018.09.031.

    Article  CAS  Google Scholar 

  140. Zouki C, Ouellet S, Ja J, Filep JG. The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J. 2000;14:572–80. https://doi.org/10.1096/FASEBJ.14.3.572.

    Article  CAS  Google Scholar 

  141. Li B, Habermann D, Kliche T, Klempt M, Wutkowski A, Clawin-Rädecker I, Koberg S, Brinks E, Koudelka T, Tholey A, Bockelmann W, Franz CMAP, Heller KJ. Soluble Lactobacillus delbrueckii subsp. bulgaricus 92059 PrtB proteinase derivatives for production of bioactive peptide hydrolysates from casein. Appl Microbiol Biotechnol. 2019;103:2731–43. https://doi.org/10.1007/S00253-018-09586-X.

    Article  CAS  Google Scholar 

  142. Malinowski J, Klempt M, Clawin-Rädecker I, Lorenzen PC, Meisel H. Identification of a NFκB inhibitory peptide from tryptic β-casein hydrolysate. Food Chem. 2014;165:129–33. https://doi.org/10.1016/J.FOODCHEM.2014.05.075.

    Article  CAS  Google Scholar 

  143. Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. Food Chem. 2021;359: 129970. https://doi.org/10.1016/J.FOODCHEM.2021.129970.

    Article  CAS  Google Scholar 

  144. Fernández-Tomé S, Sanchón J, Recio I, Hernández-Ledesma B. Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J Food Compos Anal. 2018;68:101–10. https://doi.org/10.1016/J.JFCA.2017.01.011.

    Article  Google Scholar 

  145. Thell K, Hellinger R, Schabbauer G, Gruber CW. Immunosuppressive peptides and their therapeutic applications. Drug Discovery Today. 2014;19:645–53. https://doi.org/10.1016/J.DRUDIS.2013.12.002.

    Article  CAS  Google Scholar 

  146. Chai L, Qiu Z, Zhang X, Li R, Wang K. A novel self-assemble peptide drug design of AKT1 for anaplastic thyroid cancer therapy. Biochem Biophys Res Commun. 2022;611:19–22. https://doi.org/10.1016/J.BBRC.2022.04.054.

    Article  CAS  Google Scholar 

  147. Zhou J, Zou Y, Cai Y, Chi F, Huang W, Shi W, Qian H. A designed cyclic peptide based on Trastuzumab used to construct peptide-drug conjugates for its HER2-targeting ability. Bioorg Chem. 2021;117: 105453. https://doi.org/10.1016/J.BIOORG.2021.105453.

    Article  CAS  Google Scholar 

  148. Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process. 2016;98:244–56. https://doi.org/10.1016/J.FBP.2016.02.003.

    Article  CAS  Google Scholar 

  149. Li-Chan ECY. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci. 2015;1:28–37. https://doi.org/10.1016/J.COFS.2014.09.005.

    Article  Google Scholar 

  150. Reale A, di Stasio L, di Renzo T, de Caro S, Ferranti P, Picariello G, Addeo F, Mamone G. Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem. 2021;359: 129955. https://doi.org/10.1016/J.FOODCHEM.2021.129955.

    Article  CAS  Google Scholar 

  151. Sitanggang AB, Sumitra J, Budijanto S. Continuous production of tempe-based bioactive peptides using an automated enzymatic membrane reactor. Innov Food Sci Emerg Technol. 2021;68: 102639. https://doi.org/10.1016/J.IFSET.2021.102639.

    Article  CAS  Google Scholar 

  152. Ulug SK, Jahandideh F, Wu J. Novel technologies for the production of bioactive peptides. Trends Food Sci Technol. 2021;108:27–39. https://doi.org/10.1016/J.TIFS.2020.12.002.

    Article  CAS  Google Scholar 

  153. Zhang P, Chang C, Liu H, Yan Q, Jiang Z. Efficient enzymatic production of angiotensin I-converting enzyme inhibitory peptides from three protein-rich materials by electrolyzed water pretreatment. LWT Food Sci Technol. 2022;154: 112864. https://doi.org/10.1016/J.LWT.2021.112864.

    Article  CAS  Google Scholar 

  154. Magalhães IS, Guimarães ADB, Tribst AAL, de Oliveira EB, de Leite Júnior CBR. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Res Int. 2022;157: 111310. https://doi.org/10.1016/J.FOODRES.2022.111310.

    Article  Google Scholar 

  155. Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci. 2019;20:5978. https://doi.org/10.3390/IJMS20235978.

    Article  CAS  Google Scholar 

  156. Nielsen SD, Beverly RL, Qu Y, Dallas DC. Milk bioactive peptide database: a comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017;232:673–82. https://doi.org/10.1016/J.FOODCHEM.2017.04.056.

    Article  CAS  Google Scholar 

  157. Kumar R, Chaudhary K, Sharma M, Nagpal G, Chauhan JS, Singh S, Gautam A, Raghava GPS. AHTPDB: a comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res. 2015;43:956–62. https://doi.org/10.1093/NAR/GKU1141.

    Article  Google Scholar 

  158. Kumar R, Chaudhary K, Chauhan JS, Nagpal G, Kumar R, Sharma M, Raghava GPS. An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci Rep. 2015;5:12512. https://doi.org/10.1038/srep12512.

    Article  Google Scholar 

  159. Shoombuatong W, Charoenkwan P, Kanthawong S, Nantasenamat C, Hasan MM. iDPPIV-SCM: a sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method. J Proteome Res. 2020;19:4125–36. https://doi.org/10.1021/ACS.JPROTEOME.0C00590.

    Article  Google Scholar 

  160. Dhanda SK, Gupta S, Vir P, Raghava GP. Prediction of IL4 inducing peptides. Clin Dev Immunol. 2013. https://doi.org/10.1155/2013/263952.

    Article  Google Scholar 

  161. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. Peptide toxicity prediction. Methods Mol Biol. 2015;1268:143–57. https://doi.org/10.1007/978-1-4939-2285-7_7.

    Article  CAS  Google Scholar 

  162. Lamiable A, Thévenet P, Thévenet T, Rey J, Vavrusa M, Derreumaux P, Tufféry P, Tufféry T. PEP-FOLD3: faster denovo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44:449–54. https://doi.org/10.1093/nar/gkw329.

    Article  CAS  Google Scholar 

  163. Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava GPS. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct. 2015;10:73. https://doi.org/10.1186/s13062-015-0103-4.

    Article  CAS  Google Scholar 

  164. Pierce BG, Wiehe K, Hwang H, Kim B, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. 2014;30:1771–3. https://doi.org/10.1093/bioinformatics/btu097.

    Article  CAS  Google Scholar 

  165. Honorato RV, Koukos PI, Jiménez-García B, Tsaregorodtsev A, Verlato M, Giachetti A, Rosato A, Bonvin AMJJ. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front Mol Biosci. 2021;8: 729513. https://doi.org/10.3389/FMOLB.2021.729513.

    Article  Google Scholar 

  166. Gu Y, Wu J. LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem. 2013;141:2682–90. https://doi.org/10.1016/J.FOODCHEM.2013.04.064.

    Article  CAS  Google Scholar 

  167. Wang X, Wang J, Lin Y, Ding Y, Wang Y, Cheng X, Lin Z. QSAR study on angiotensin-converting enzyme inhibitor oligopeptides based on a novel set of sequence information descriptors. J Mol Model. 2011;17:1599–606. https://doi.org/10.1007/S00894-010-0862-X.

    Article  CAS  Google Scholar 

  168. Calderón-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2018;37:715–37. https://doi.org/10.1002/mas.21542.

    Article  CAS  Google Scholar 

  169. Pisanu S, Pagnozzi D, Pes M, Pirisi A, Roggio T, Uzzau S, Addis MF. Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. Int Dairy J. 2015;42:26–33. https://doi.org/10.1016/J.IDAIRYJ.2014.10.007.

    Article  CAS  Google Scholar 

  170. Shirotani N, Bygvraa Hougaard A, Lametsch R, Agerlin Petersen M, Rattray FP, Ipsen R. Proteolytic activity of selected commercial Lactobacillus helveticus strains on soy protein isolates. Food Chem. 2021;340: 128152. https://doi.org/10.1016/J.FOODCHEM.2020.128152.

    Article  CAS  Google Scholar 

  171. Vélez-Bermúdez IC, Wen TN, Lan P, Schmidt W. Isobaric tag for relative and absolute quantitation (iTRAQ)-based protein profiling in plants. Methods Mol Biol. 2016;1450:213–21. https://doi.org/10.1007/978-1-4939-3759-2_17.

    Article  CAS  Google Scholar 

  172. Ma X, Zhang J, Liang J, Ma X, Xing R, Han J, Guo L, Chen Y. Authentication of Edible Bird’s Nest (EBN) and its adulterants by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Res Int. 2019;125: 108639. https://doi.org/10.1016/J.FOODRES.2019.108639.

    Article  CAS  Google Scholar 

  173. Kohl S, Behrens M, Dunkel A, Hofmann T, Meyerhof W. Amino acids and peptides activate at least five members of the human bitter taste receptor family. J Agric Food Chem. 2013;61:53–60. https://doi.org/10.1021/JF303146H/ASSET/IMAGES/MEDIUM/JF-2012-03146H_0006.GIF.

    Article  CAS  Google Scholar 

  174. Ito M, Ikehama K, Yoshida K, Haraguchi T, Yoshida M, Wada K, Uchida T. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue. Int J Pharm. 2013;441:121–7. https://doi.org/10.1016/J.IJPHARM.2012.11.047.

    Article  CAS  Google Scholar 

  175. Newman J, Harbourne N, O’Riordan D, Jacquier JC, O’Sullivan M. Comparison of a trained sensory panel and an electronic tongue in the assessment of bitter dairy protein hydrolysates. J Food Eng. 2014;128:127–31. https://doi.org/10.1016/J.JFOODENG.2013.12.019.

    Article  CAS  Google Scholar 

  176. Akitomi H, Tahara Y, Yasuura M, Kobayashi Y, Ikezaki H, Toko K. Quantification of tastes of amino acids using taste sensors. Sens Actuators B Chem. 2013;179:276–81. https://doi.org/10.1016/J.SNB.2012.09.014.

    Article  CAS  Google Scholar 

  177. Behrens M, Meyerhof W. Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. Semin Cell Dev Biol. 2013;24:215–21. https://doi.org/10.1016/J.SEMCDB.2012.08.006.

    Article  CAS  Google Scholar 

  178. Gao Y, Wu X, McClements DJ, Cheng C, Xie Y, Liang R, Liu J, Zou L, Liu W. Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chem. 2022;386: 132787. https://doi.org/10.1016/J.FOODCHEM.2022.132787.

    Article  CAS  Google Scholar 

  179. Cheung LKY, Aluko RE, Cliff MA, Li-Chan ECY. Effects of exopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates. J Funct Foods. 2015;13:262–75. https://doi.org/10.1016/J.JFF.2014.12.036.

    Article  CAS  Google Scholar 

  180. Xu Q, Singh N, Hong H, Yan X, Yu W, Jiang X, Chelikani P, Wu J. Hen protein-derived peptides as the blockers of human bitter taste receptors T2R4, T2R7 and T2R14. Food Chem. 2019;283:621–7. https://doi.org/10.1016/J.FOODCHEM.2019.01.059.

    Article  CAS  Google Scholar 

  181. Yang S, Mao XY, Li FF, Zhang D, Leng XJ, Ren FZ, Teng GX. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol. 2012;235:91–7. https://doi.org/10.1007/S00217-012-1735-6.

    Article  CAS  Google Scholar 

  182. Xia Y, Zhu L, Wu G, Liu T, Li X, Wang X, Zhang H. Comparative study of various methods used for bitterness reduction from pea (Pisum sativum L.) protein hydrolysates. LWT. 2022;159: 113228. https://doi.org/10.1016/J.LWT.2022.113228.

    Article  CAS  Google Scholar 

  183. Singla G, Singh U, Sangwan RS, Panesar PS, Krishania M. Comparative study of various processes used for removal of bitterness from kinnow pomace and kinnow pulp residue. Food Chem. 2021;335: 127643. https://doi.org/10.1016/J.FOODCHEM.2020.127643.

    Article  CAS  Google Scholar 

  184. Kim MJ, Son HJ, Kim Y, Misaka T, Rhyu MR. Umami–bitter interactions: the suppression of bitterness by umami peptides via human bitter taste receptor. Biochem Biophys Res Commun. 2015;456:586–90. https://doi.org/10.1016/J.BBRC.2014.11.114.

    Article  CAS  Google Scholar 

  185. Pydi SP, Sobotkiewicz T, Billakanti R, Bhullar RP, Loewen MC, Chelikani P. Amino acid derivatives as bitter taste receptor (T2R) blockers. J Biol Chem. 2014;289:25054–66. https://doi.org/10.1074/JBC.M114.576975.

    Article  CAS  Google Scholar 

  186. Zhang C, Alashi AM, Singh N, Liu K, Chelikani P, Aluko RE. Beef protein-derived peptides as bitter taste receptor T2R4 blockers. J Agric Food Chem. 2018;66:4902–12. https://doi.org/10.1021/ACS.JAFC.8B00830.

    Article  CAS  Google Scholar 

  187. Gallego M, Grootaert C, Mora L, Aristoy MC, van Camp J, Toldrá F. Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. J Funct Foods. 2016;21:388–95. https://doi.org/10.1016/J.JFF.2015.11.046.

    Article  CAS  Google Scholar 

  188. Udenigwe CC, Abioye RO, Okagu IU, Obeme-Nmom JI. Bioaccessibility of bioactive peptides: recent advances and perspectives. Curr Opin Food Sci. 2021;39:182–9. https://doi.org/10.1016/J.COFS.2021.03.005.

    Article  CAS  Google Scholar 

  189. Bhat RAH, Khangembam VC, Thakuria D, Pant V, Tandel RS, Tripathi G, Sarma D. Antimicrobial activity of an artificially designed peptide against fish pathogens. Microbiol Res. 2022;260: 127039. https://doi.org/10.1016/J.MICRES.2022.127039.

    Article  CAS  Google Scholar 

  190. Grover V, Chopra P, Mehta M. Synthetic short peptides (SSPs) as antibiofilm agents for dental material applications. Mater Today Proc. 2022;50:665–72. https://doi.org/10.1016/J.MATPR.2021.04.282.

    Article  CAS  Google Scholar 

  191. Räder AFB, Reichart F, Weinmüller M, Kessler H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem. 2018;26:2766–73. https://doi.org/10.1016/J.BMC.2017.08.031.

    Article  Google Scholar 

  192. Shwaiki LN, Lynch KM, Arendt EK. Future of antimicrobial peptides derived from plants in food application—a focus on synthetic peptides. Trends Food Sci Technol. 2021;112:312–24. https://doi.org/10.1016/J.TIFS.2021.04.010.

    Article  CAS  Google Scholar 

  193. Abdildinova A, Kurth MJ, Gong YD. Solid-phase synthesis of peptidomimetics with peptide backbone modifications. Asian J Organic Chem. 2021;10:2300–17. https://doi.org/10.1002/AJOC.202100264.

    Article  CAS  Google Scholar 

  194. Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF, Appel RD. Detailed peptide characterization using PEPTIDEMASS–a World-Wide-Web-accessible tool. Electrophoresis. 1997;18:403–8. https://doi.org/10.1002/ELPS.1150180314.

    Article  CAS  Google Scholar 

  195. Jensen KB, Mikkelsen JH, Jensen SP, Kidal S, Friberg G, Skrydstrup T, Gustafsson MBF. New phenol esters for efficient pH-controlled amine acylation of peptides, proteins, and sepharose beads in aqueous media. Bioconjug Chem. 2021;33:172–9. https://doi.org/10.1021/ACS.BIOCONJCHEM.1C00528.

    Article  Google Scholar 

  196. Oba M, Nagano Y, Kato T, Tanaka M. Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers. Sci Rep. 2019;9:1349. https://doi.org/10.1038/S41598-018-38063-8.

    Article  Google Scholar 

  197. Sun X, Udenigwe CC. Chemistry and biofunctional significance of bioactive peptide interactions with food and gut components. J Agric Food Chem. 2020;68:12972–7. https://doi.org/10.1021/ACS.JAFC.9B07559/ASSET/IMAGES/MEDIUM/JF9B07559_0004.GIF.

    Article  CAS  Google Scholar 

  198. Wang Y, Selomulya C. Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Adv Powder Technol. 2020;31:409–15. https://doi.org/10.1016/J.APT.2019.10.034.

    Article  CAS  Google Scholar 

  199. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Coll Interface Sci. 2018;253:1–22. https://doi.org/10.1016/J.CIS.2018.02.002.

    Article  CAS  Google Scholar 

  200. Manzanares P, Gandía M, Garrigues S, Marcos JF. Improving health-promoting effects of food-derived bioactive peptides through rational design and oral delivery strategies. Nutrients. 2019;11:2545. https://doi.org/10.3390/NU11102545.

    Article  CAS  Google Scholar 

  201. Choi MJ, Choi D, Lee J, Jo YJ. Encapsulation of a bioactive peptide in a formulation of W1/O/W2-type double emulsions: Formation and stability. Food Struct. 2020;25: 100145. https://doi.org/10.1016/J.FOOSTR.2020.100145.

    Article  Google Scholar 

  202. Worsztynowicz P, Białas W, Grajek W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem. 2020;312: 126035. https://doi.org/10.1016/J.FOODCHEM.2019.126035.

    Article  Google Scholar 

  203. Seppo L, Jauhiainen T, Poussa T, Korpela R. A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. Am J Clin Nutr. 2003;77:326–30. https://doi.org/10.1093/AJCN/77.2.326.

    Article  CAS  Google Scholar 

  204. Jauhiainen T, Vapaatalo H, Poussa T, Kyrönpalo S, Rasmussen M, Korpela R. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am J Hypertens. 2005;18:1600–5. https://doi.org/10.1016/J.AMJHYPER.2005.06.006/2/AJH.1600.F1.JPEG.

    Article  Google Scholar 

  205. Rodríguez-Figueroa JC, González-Córdova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci. 2012;95:5536–43. https://doi.org/10.3168/JDS.2011-5186.

    Article  Google Scholar 

  206. Xia Y, Yu J, Xu W, Shuang Q. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. J Dairy Sci. 2020;103:4919–28. https://doi.org/10.3168/JDS.2019-17594.

    Article  CAS  Google Scholar 

  207. Fung WY, Liong MT. Evaluation of proteolytic and ACE-inhibitory activity of Lactobacillus acidophilus in soy whey growth medium via response surface methodology. LWT Food Sci Technol. 2010;43:563–7. https://doi.org/10.1016/J.LWT.2009.10.004.

    Article  CAS  Google Scholar 

  208. Najafian L, Babji AS. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). J Food Meas Characterization. 2018;12:2174–83. https://doi.org/10.1007/S11694-018-9833-1.

    Article  Google Scholar 

  209. Azi F, Tu C, Meng L, Zhiyu L, Cherinet MT, Ahmadullah Z, Dong M. Metabolite dynamics and phytochemistry of a soy whey-based beverage bio-transformed by water kefir consortium. Food Chem. 2021;342: 128225. https://doi.org/10.1016/J.FOODCHEM.2020.128225.

    Article  CAS  Google Scholar 

  210. Fan M, Guo T, Li W, Chen J, Li F, Wang C, Shi Y, Li DX, Zhang S. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Sci Human Wellness. 2019;8:156–76. https://doi.org/10.1016/j.fshw.2019.03.010.

    Article  Google Scholar 

  211. Arulrajah B, Muhialdin BJ, Zarei M, Hasan H, Saari N. Lacto-fermented Kenaf (Hibiscus cannabinus L.) seed protein as a source of bioactive peptides and their applications as natural preservatives. Food Control. 2020;110: 106969. https://doi.org/10.1016/J.FOODCONT.2019.106969.

    Article  CAS  Google Scholar 

  212. Chen Y, Gao X, Wei Y, Liu Q, Jiang Y, Zhao L, Ulaah S. Isolation, purification and the anti-hypertensive effect of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from Ruditapes philippinarum fermented with Bacillus natto. Food Funct. 2018;9:5230–7. https://doi.org/10.1039/C8FO01146J.

    Article  CAS  Google Scholar 

  213. Song Y, Yu J, Song J, Wang S, Cao T, Liu Z, Gao X, Wei Y. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. J Funct Foods. 2021;79: 104411. https://doi.org/10.1016/J.JFF.2021.104411.

    Article  CAS  Google Scholar 

  214. Singh BP, Vij S. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. LWT Food Sci Technol. 2017;86:293–301. https://doi.org/10.1016/j.lwt.2017.08.013.

    Article  CAS  Google Scholar 

  215. Ramírez K, Pineda-Hidalgo KV, Rochín-Medina JJ. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT. 2021;138: 110685. https://doi.org/10.1016/J.LWT.2020.110685.

    Article  Google Scholar 

  216. Algboory HL, Muhialdin BJ. Novel peptides contribute to the antimicrobial activity of camel milk fermented with Lactobacillus plantarum IS10. Food Control. 2021;126: 108057. https://doi.org/10.1016/J.FOODCONT.2021.108057.

    Article  CAS  Google Scholar 

  217. Cheng AC, Lin HL, Shiu YL, Tyan YC, Liu CH. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol. 2017;67:270–9. https://doi.org/10.1016/J.FSI.2017.06.006.

    Article  CAS  Google Scholar 

  218. Cho SH, Lee BD, An H, Eun JB, Kenojeinin I. antimicrobial peptide isolated from the skin of the fermented skate, Raja kenojei. Peptides. 2005;26:581–7. https://doi.org/10.1016/J.PEPTIDES.2004.11.011.

    Article  CAS  Google Scholar 

  219. Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M. Angiotensin I-converting enzyme inhibitory peptides isolated from Tofuyo fermented soybean food. Biosci Biotechnol Biochem. 2003;67:1278–83. https://doi.org/10.1271/BBB.67.1278.

    Article  CAS  Google Scholar 

  220. McNair LKF, Siedler S, Vinther JMO, Hansen AM, Neves AR, Garrigues C, Jäger AK, Franzyk H, Staerk D. Identification and characterization of a new antifungal peptide in fermented milk product containing bioprotective Lactobacillus cultures. FEMS Yeast Res. 2018;18:94. https://doi.org/10.1093/FEMSYR/FOY094.

    Article  Google Scholar 

  221. Panchal GK, Das S, Sakure A, Singh BP, Hati S. Production and characterization of antioxidative peptides during lactic fermentation of goat milk. J Food Process Preserv. 2021;45: e15992. https://doi.org/10.1111/JFPP.15992.

    Article  CAS  Google Scholar 

  222. Choksawangkarn W, Phiphattananukoon S, Jaresitthikunchai J, Roytrakul S. Antioxidative peptides from fish sauce by-product: Isolation and characterization. Agric Nat Resour. 2018;52:460–6. https://doi.org/10.1016/J.ANRES.2018.11.001.

    Article  Google Scholar 

  223. Kim HJ, Kang SG, Jaiswal L, Li J, Choi JH, Moon SM, Cho JY, Ham KS. Identification of four new angiotensin I-converting enzyme inhibitory peptides from fermented anchovy sauce. Appl Biol Chem. 2016;59:25–31. https://doi.org/10.1007/S13765-015-0129-4.

    Article  CAS  Google Scholar 

  224. Chen L, Hui Y, Gao T, Shu G, Chen H. Function and characterization of novel antioxidant peptides by fermentation with a wild Lactobacillus plantarum 60. LWT. 2021;135: 110162. https://doi.org/10.1016/J.LWT.2020.110162.

    Article  CAS  Google Scholar 

  225. Mora L, Escudero E, Fraser PD, Aristoy MC, Toldrá F. Proteomic identification of antioxidant peptides from 400 to 2500 Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Res Int. 2014;56:68–76. https://doi.org/10.1016/J.FOODRES.2013.12.001.

    Article  CAS  Google Scholar 

  226. Xing LJ, Hu YY, Hu HY, Ge QF, Zhou GH, Zhang WG. Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chem. 2016;194:951–8. https://doi.org/10.1016/J.FOODCHEM.2015.08.101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Institute of Bioresources and Sustainable Development for the kind support and encouragement. The manuscript corresponds to IBSD manuscript number IBSD/MS/2020/01/098.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RC: methodology, investigation, formal analysis, validation, visualization, and writing—original draft. LCP: investigation, validation, data curation, and visualization. MMA: investigation, validation, and data curation. SP: investigation, validation, and visualization. SPS: conceptualization, resources, writing—review and editing, visualization, supervision, project administration, and funding acquisition. AKR: conceptualization, resources, writing—review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Sudhir P. Singh or Amit Kumar Rai.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chourasia, R., Chiring Phukon, L., Abedin, M.M. et al. Bioactive peptides in fermented foods and their application: a critical review. Syst Microbiol and Biomanuf 3, 88–109 (2023). https://doi.org/10.1007/s43393-022-00125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00125-4

Keywords

Navigation