Skip to main content
Log in

Improve gamma-aminobutyric acid production in Corynebacterium glutamicum by optimizing the metabolic flux

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid is an important nonprotein amino acid and has been extensively applied in pharmaceuticals, livestock, food additives, and so on. It is important to develop Corynebacterium glutamicum strains that can efficiently produce gamma-aminobutyric acid from glucose. In this study, production of gamma-aminobutyric acid in C. glutamicum CGY700 was improved by construction of CO2 anaplerotic reaction and overexpression of citrate synthase. The co-expression of ppc encoding phosphoenolpyruvate carboxylase and gltA encoding citrate synthase was constructed and optimized in the chromosome to compensate carbon loss and conquer metabolic bottleneck. The expression of ppc and gltA were controlled by promoters Ptac and PtacM, and the optimal mode of PtacM-ppc-Ptac-gltA was determined. Simultaneously, the genes pknG encoding serine/threonine protein kinase G and ldh encoding l-lactate dehydrogenase were deleted, and glnA2 encoding glutamine synthase was overexpressed in the chromosome. The final strain CGY-PG-304 constructed in this study could produce 41.17 g/L gamma-aminobutyric acid in shake flask cultivation and 58.33 g/L gamma-aminobutyric acid via Fed-Batch fermentation with a yield of 0.30 g/g glucose. CGY-PG-304 was constructed by genome editing; therefore, it is stable and not necessary to add any antibiotics and inducer during fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK. Recent advances in gamma-aminobutyric acid (GABA) properties in pulses: an overview. J Sci Food Agric. 2017;97(9):2681–9.

    Article  CAS  PubMed  Google Scholar 

  2. Yang J, Sun C, Zhang Y, Fu D, Zheng X, Yu T. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata. Food Chem. 2017;221:1014–20.

    Article  CAS  PubMed  Google Scholar 

  3. Seitanidou M, Franco-Gonzalez JF, Sjostrom TA, Zozoulenko I, Berggren M, Simon DT. pH Dependence of gamma-aminobutyric acid iontronic transport. J Phys Chem B. 2017;121(30):7284–9.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF. The gamma-aminobutyric acid B receptor in depression and reward. Biol Psychiatry. 2018;83(11):963–76.

    Article  CAS  PubMed  Google Scholar 

  5. Wong CG, Bottiglieri T, Snead OC 3rd. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol. 2003;54(Suppl 6):S3-12.

    Article  CAS  PubMed  Google Scholar 

  6. Tang J, Chen Z. The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. J Anim Physiol Anim Nutr. 2016;100(4):768–77.

    Article  CAS  Google Scholar 

  7. Cheng JB, Bu DP, Wang JQ, Sun XZ, Pan L, Zhou LY, Liu W. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows. J Dairy Sci. 2014;97(9):5599–607.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol. 2009;130(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura H, Takishima T, Kometani T, Yokogoshi H. Psychological stress-reducing effect of chocolate enriched with γ-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int J Food Sci Nutr. 2009;60(sup5):106–13.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr. 2003;57:490–5.

    Article  CAS  PubMed  Google Scholar 

  11. Leonte A, Colzato LS, Steenbergen L, Hommel B, Akyurek EG. Supplementation of gamma-aminobutyric acid (GABA) affects temporal, but not spatial visual attention. Brain Cogn. 2018;120:8–16.

    Article  PubMed  Google Scholar 

  12. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng. 2013;36(7):885–92.

    Article  CAS  PubMed  Google Scholar 

  13. Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of γ-aminobutyric acid. Green Chem. 2010;12(8):1430.

    Article  CAS  Google Scholar 

  14. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015;6:1520.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ke C, Yang X, Rao H, Zeng W, Hu M, Tao Y, Huang J. Whole-cell conversion of l-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli. Springerplus. 2016;5(1):1–8.

    Article  Google Scholar 

  16. Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol. 2021;41:491–512.

    Article  PubMed  Google Scholar 

  17. Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J Dairy Sci. 2015;98(4):2138–49.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Huang J, Sun L, Xu F, Zhang W, Zhan J. An efficient process for co-production of γ-aminobutyric acid and probiotic Bacillus subtilis cells. Food Sci Biotechnol. 2018;28(1):155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol. 2017;101(9):3587–603.

    Article  CAS  PubMed  Google Scholar 

  20. Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids. 2016;48(11):2519–31.

    Article  CAS  PubMed  Google Scholar 

  21. Jorge JMP, Nguyen AQD, Perez-Garc F, Kind S, Wendisch VF. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng. 2017;114(4):862–73.

    Article  CAS  PubMed  Google Scholar 

  22. Thu Ho NA, Hou CY, Kim WH, Kang TJ. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. J Biosci Bioeng. 2013;115(2):154–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yu K, Lin L, Hu S, Huang J, Mei L. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH. Enzyme Microb Technol. 2012;50(4–5):263–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol. 2014;61–62:35–43.

    Article  PubMed  Google Scholar 

  25. Park S-H, Sohn YJ, Park SJ, Choi J-I. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Microb Cell Fact. 2020;19(1):1–12.

    Article  Google Scholar 

  26. Shi F, Luan M, Li Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing gamma-aminobutyrate in Corynebacterium glutamicum. AMB Expr. 2018;8(1):61.

    Article  Google Scholar 

  27. Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol. 2012;51(3):171–6.

    Article  CAS  PubMed  Google Scholar 

  28. Baritugo K-A, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact. 2018;17(1):1–12.

    Article  Google Scholar 

  29. Zhang R, Yang T, Rao Z, Sun H, Xu M, Zhang X, Xu Z, Yang S. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem. 2014;16(9):4190.

    Article  CAS  Google Scholar 

  30. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact. 2015;14(1):1-11.

    Article  Google Scholar 

  31. Yao C, Hu X, Wang X. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Expr. 2021;11(1):1–15.

    Article  Google Scholar 

  32. Schultz C, Niebisch A, Gebel L, Bott M. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol. 2007;76(3):691–700.

    Article  CAS  PubMed  Google Scholar 

  33. Okai N, Takahashi C, Hatada K, Ogino C, Kondo A. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Expr. 2014;4(1):1–8.

    CAS  Google Scholar 

  34. Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor l-glutamate in recombinant Corynebacterium glutamicum. Biotechnol Lett. 2015;37(7):1473–81.

    Article  CAS  PubMed  Google Scholar 

  35. Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, Eikmanns BJ. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol. 2001;3(4):573–83.

    CAS  PubMed  Google Scholar 

  36. Peters-Wendisch PG, Eikmanns BJ, Thierbach G, Bachmann B, Sahm H. Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production. FEMS Microbiol Lett. 1993;112:269–74.

    Article  CAS  Google Scholar 

  37. Xu D, Zhao J, Cao G, Wang J, Li Q, Zheng P, Zhao S, Sun J. Removal of feedback inhibition of Corynebacterium glutamicum phosphoenolpyruvate carboxylase by addition of a short terminal peptide. Biotechnol Bioproc E. 2018;23(1):72–8.

    Article  CAS  Google Scholar 

  38. Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang Y-J, Chen T, Zhao X. Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate. Biotechnol Biofuels. 2018;11(1):1–7.

    Article  Google Scholar 

  39. Wang Z, Moslehi-Jenabian S, Solem C, Jensen PR. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain. Eng Life Sci. 2015;15(1):73–82.

    Article  Google Scholar 

  40. Hu J, Li Y, Zhang H, Tan Y, Wang X. Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid. 2014;75:18–26.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu L, Mack C, Wirtz A, Kranz A, Polen T, Baumgart M, Bott M. Regulation of γ-aminobutyrate (GABA) utilization in Corynebacterium glutamicum by the PucR-type transcriptional regulator GabR and by alternative nitrogen and carbon sources. Front Microbiol. 2020;11:1–20.

    Article  Google Scholar 

  42. Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–67.

    Article  CAS  PubMed  Google Scholar 

  43. Soma Y, Fujiwara Y, Nakagawa T, Tsuruno K, Hanai T. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metab Eng. 2017;43:54–63.

    Article  CAS  PubMed  Google Scholar 

  44. Im DK, Hong J, Gu B, Sung C, Oh MK. 13C metabolic flux analysis of Escherichia coli engineered for gamma-aminobutyrate production. Biotechnol J. 2020;15(6):1900346.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2021YFC2100900) and the Key Technology Project of Inner Mongolia Autonomous Region, China (2019GG302).

Funding

Publication costs are funded by the National Key Research and Development Program of China (2021YFC2100900); the Key Technology Project of Inner Mongolia Autonomous Region, China (2019GG302).

Author information

Authors and Affiliations

Authors

Contributions

XW and CY conceived and designed research. XW, CY, YL, and XH conducted experiments. XW contributed new reagents or analytical tools. XW and CY analyzed data. CY wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyuan Wang.

Ethics declarations

Consent to participate

Not applicable.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Written informed consent for publication was obtained from all participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Liu, Y., Hu, X. et al. Improve gamma-aminobutyric acid production in Corynebacterium glutamicum by optimizing the metabolic flux. Syst Microbiol and Biomanuf 2, 305–316 (2022). https://doi.org/10.1007/s43393-021-00062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00062-8

Keywords

Navigation