Skip to main content

Advertisement

Log in

Soft-switching and low conduction loss current-fed isolated bidirectional DC–DC converter with PWM plus dual phase-shift control

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In battery energy storage systems, the battery and DC bus voltages vary greatly. This makes it difficult for the battery storage converter to maintain high efficiencies under all circumstances. A current-fed isolated bidirectional DC–DC converter is presented in this paper. This converter contains two series transformers, two conventional current-fed half-bridges at the battery side and two half-bridges at the DC bus side. PWM plus dual phase shift modulation with equal duty cycles and voltage-matched control is applied to ensure ZVS of all the switches and low conduction losses. The average and backflow power transmission equations and soft-switching conditions for all of the operation modes in the full operation range are analyzed comprehensively in this paper. Then six recommended modes are addressed based on the above analyses. Moreover, the control scheme and hardware design guidelines are addressed. Finally, the above theoretical analyses and control strategy are verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang, Z., Cai, Y., Zhang, Y., et al.: A distributed architecture based on microbank modules with self-reconfiguration control to improve the energy efficiency in the battery energy storage system. IEEE Trans. Power Electron. 31(1), 304–317 (2016)

    Article  Google Scholar 

  2. Everts, J., Krismer, F., Van den Keybus, J., et al.: Optimal ZVS modulation of single-phase single-stage bidirectional DAB AC–DC converters. IEEE Trans. Power Electron. 29(8), 3954–3970 (2014)

    Article  Google Scholar 

  3. Zhao, B., Song, Q., Liu, W., et al.: Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091–4106 (2014)

    Article  Google Scholar 

  4. Zhao, B., Song, Q., Liu, W., et al.: Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC–DC converter under PWM plus phase-shift control. IEEE Trans. Power Electron. 30(12), 6488–6494 (2015)

    Article  Google Scholar 

  5. Wolfs, P.J.: A current-sourced DC–DC converter derived via the duality principle from the half-bridge converter. IEEE Trans. Ind. Electron. 40(1), 139–144 (1993)

    Article  Google Scholar 

  6. Jiang, T., Zhang, J., Wu, X., et al.: A bidirectional LLC resonant converter with automatic forward and backward mode transition. IEEE Trans. Power Electron. 30(2), 757–770 (2015)

    Article  Google Scholar 

  7. Corradini, L., Seltzer, D., Bloomquist, D., et al.: Minimum current operation of bidirectional dual-bridge series resonant DC–DC converters. IEEE Trans. Power Electron. 27(7), 3266–3276 (2012)

    Article  Google Scholar 

  8. He, P., Mallik, A., Sankar, A., et al.: Design of a 1-MHz high-efficiency high-power-density bidirectional GaN-based CLLC converter for electric vehicles. IEEE Trans. Veh. Technol. 68(1), 213–223 (2019)

    Article  Google Scholar 

  9. Ding, Z., Yang, C., Zhang, Z., et al.: A novel soft-switching multiport bidirectional DC–DC converter for hybrid energy storage system. IEEE Trans. Power Electron. 29(4), 1595–1609 (2014)

    Article  Google Scholar 

  10. Xiao, H., Xie, S.: A ZVS bidirectional DC–DC converter with phase-shift plus PWM control scheme. IEEE Trans. Power Electron. 23(2), 813–823 (2008)

    Article  Google Scholar 

  11. Liang, T., Lee, J.: Novel high-conversion-ratio high-efficiency isolated bidirectional DC–DC converter. IEEE Trans. Ind. Electron. 62(7), 4492–4503 (2015)

    Article  Google Scholar 

  12. Sha, D., Lin, Q., You, F., et al.: A ZVS bidirectional three-level DC–DC converter with direct current slew rate control of leakage inductance current. IEEE Trans. Ind. Appl. 52(3), 2368–2377 (2016)

    Article  Google Scholar 

  13. Li, W., Wu, H., Yu, H., et al.: Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy. IEEE Trans. Power Electron. 26(12), 3560–3570 (2011)

    Article  Google Scholar 

  14. Sha, D., Zhang, J., Wang, X., et al.: Dynamic response improvements of parallel-connected bidirectional DC–DC converters for electrical drive powered by low-voltage battery employing optimized feedforward control. IEEE Trans. Power Electron. 32(10), 7783–7794 (2017)

    Article  Google Scholar 

  15. Sha, D., Wang, X., Xu, Y.: Unequal PWM control for a current-fed dc–dc converter for battery application. In: 2017 IEEE applied power electronics conference and exposition (APEC), pp. 3373–3377 (2017)

  16. Sha, D., Wang, X., Chen, D.: High-efficiency current-fed dual active bridge DC–DC converter with ZVS achievement throughout full range of load using optimized switching patterns. IEEE Trans. Power Electron. 33(2), 1347–1357 (2018)

    Article  Google Scholar 

  17. Sha, D., Wang, X., Liu, K., et al.: A current-fed dual-active-bridge DC–DC converter using extended duty cycle control and magnetic-integrated inductors with optimized voltage mismatching control. IEEE Trans. Power Electron. 34(1), 462–473 (2019)

    Article  Google Scholar 

  18. Shi, Y., Li, R., Xue, Y., et al.: Optimized operation of current-fed dual active bridge DC–DC converter for PV applications. IEEE Trans. Ind. Electron. 62(11), 6986–6995 (2015)

    Article  Google Scholar 

  19. Guo, Z., Sun, K., Wu, T., et al.: An improved modulation scheme of current-fed bidirectional DC–DC converters for loss reduction. IEEE Trans. Power Electron. 33(5), 4441–4457 (2018)

    Article  Google Scholar 

  20. Prasanna, U.R., Rathore, A.K., Mazumder, S.K.: Novel zero-current-switching current-fed half-bridge isolated DC/DC converter for fuel-cell-based applications. IEEE Trans. Ind. Appl. 49(4), 1658–1668 (2013)

    Article  Google Scholar 

  21. Rathore, A.K., Prasanna, U.R.: Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles. IEEE Trans. Ind. Electron. 60(10), 4482–4491 (2013)

    Article  Google Scholar 

  22. Nayanasiri, D.R., Foo, G.H.B., Vilathgamuwa, D.M., et al.: A switching control strategy for single- and dual-inductor current-fed push–pull converters. IEEE Trans. Power Electron. 30(7), 3761–3771 (2015)

    Article  Google Scholar 

  23. Zhang, Z., Wu, Z., Xie, S., et al: A soft-switching current-fed isolated bidirectional dc–dc converter with low circulating power and easy-implemented control strategy. In: Proceedings of IEEE energy conversion congress and exposition, pp. 1310–1314 (2019)

  24. Wen, H., Xiao, W., Su, B.: Nonactive power loss minimization in a bidirectional isolated DC–DC converter for distributed power systems. IEEE Trans. Ind. Electron. 61(12), 6822–6831 (2014)

    Article  Google Scholar 

  25. Shi, H., Wen, H., Chen, J., et al.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483–3496 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Award 51877104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xie, S., Wu, Z. et al. Soft-switching and low conduction loss current-fed isolated bidirectional DC–DC converter with PWM plus dual phase-shift control. J. Power Electron. 20, 664–674 (2020). https://doi.org/10.1007/s43236-020-00074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00074-y

Keywords

Navigation