Skip to main content

Advertisement

Log in

The influence of surface lithium residue to the performance of LiNi0.9Co0.05Mn0.05O2 cathode materials

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

High nickel ternary cathode materials (Ni ≥ 90%) have great potential for application as power batteries in electric vehicles and have become a hot spot for research on cathode materials. However, the residual Li on the surface of the high Ni ternary cathode materials prepared by solid-phase sintering is one of the main reasons affecting their electrochemical performance. It is found that Li1 + x(Ni0.9Co0.05Mn0.05)1-xO2 with x = 0.3, which has a discharge-specific capacity of 205.74 mAh g−1 at 2.7–4.3 V, 0.1C and 184.1 mAh g−1 at 1 C, retained 89% of its initial discharge capacity after 100 cycles at 1 C. The discharge-specific capacity at 10 C was 153.14 mAh g−1. In addition, the Li residue of NCM90-1.03 was 17,189.959 ppm, and the total alkalinity was 4196.896 ppm. The results by X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that when the Li excess was 0.3%, it was possible to obtain uniform particle size, a wider Li layer, and reduced cation mixing. Therefore, choosing the right amount of excess Li can stimulate the application prospect of NCM90 in new energy vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Li, Y. Xu, Development status and trend analysis of lithium-ion power batteries. China’s Man Indus. 38(05), 9–13 (2020)

    Google Scholar 

  2. F.B. Zhang, Development status and research progress of power battery for pure electric vehicles. J Zhangzhou Insti Technol. 22(02), 86–91 (2020)

    Google Scholar 

  3. G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2016)

    Article  Google Scholar 

  4. Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, F. Wu, Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl. Energy. 195, 586–599 (2017)

    Article  CAS  Google Scholar 

  5. E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Sustainable recycling technology for li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020)

    Article  CAS  Google Scholar 

  6. Y. Kim, Point defects in layer-structured cathode materials for lithium-ion batteries. J. Phys. Chem. A. 120(8), 4173–4182 (2016)

    CAS  Google Scholar 

  7. A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021)

    Article  CAS  Google Scholar 

  8. L. Jia, 2017–2016 automotive lithium-ion battery market analysis and research report. Inorg Chem Indus. Inorg Chem Indus. 50(01), 77 (2018)

    Google Scholar 

  9. Z. Qu, S. Liu, P. Zhang, R. Wang, H. Wang, B. He, Y. Gong, J. Jin, S. Li, Enhanced eletrochemical performances of LiCoO2 at high cut-off voltage by introducing LiF additive. Solid State Ion. 365, 115654 (2021)

    Article  CAS  Google Scholar 

  10. M. Zou, S. Masaki Yoshio, J.Y. Gopukumar, Synthesis of high-voltage (45 V) cycling doped licoo2 for use in lithium rechargeable cells. Chem. Mater. 15(25), 4699–4720 (2003)

    Article  CAS  Google Scholar 

  11. Y. He, Q. Feng, S. Zhang, Q. Zou, X. Wu, X. Yang, Strategy for lowering li source dosage while keeping high reactivity in solvothermal synthesis of LiMnO2 nanocrystals. ACS Sustain. Chem. Eng. 1(6), 570–573 (2013)

    Article  CAS  Google Scholar 

  12. N. Leifer, F. Schipper, E.M. Erickson, C. Ghanty, M. Talianker, J. Grinblat, C.M. Julien, B. Markovsky, D. Aurbach, Studies of spinel-to-Layered structural transformations in limn2o4 electrodes charged to high voltages. J. Phys. Chem. A. 121(17), 9120–9130 (2017)

    CAS  Google Scholar 

  13. I.D. Seymour, D.J. Wales, C.P. Grey, Preventing structural rearrangements on battery cycling: a first-principles investigation of the effect of dopants on the migration barriers in Layered Li05MnO2. J. Phys. Chem. A. 120(35), 19521–19530 (2016)

    CAS  Google Scholar 

  14. T. Zhang, S. Lin, J.G. Yu, Research progress in synthesis and performance enhancement of Li FePO4 cathode materials Inorganic. Chemicals Industry. 53(06), 31–40 (2021)

    Google Scholar 

  15. G. Li, P. Wu, C. Luo, Q. Cui, G. Wang, K. Yan, Mass production of LiFePO4/C energy materials using Fe–P waste slag. J. Energy Chem. 24(4), 375–380 (2015)

    Article  Google Scholar 

  16. T. Teng, L. Xiao, L. Shen, G. Qiu, J. Ran, X. Guo, Y. Zhu, H. Chen, Effect of Nb doping at Fe site on the cycling stability and rate capability of LiFePO4 for lithium-ion batteries. Vacuum 203, 111306 (2022)

    Article  CAS  Google Scholar 

  17. Z. Chen, Z. Wang, G.T. Kim, G. Yang, H. Wang, X. Wang, Y. Huang, S. Passerini, Z. Shen, Enhancing the Electrochemical Performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 Coating. ACS Appl. Mater. 11(30), 26994–27003 (2019)

    Article  CAS  Google Scholar 

  18. J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, I. Cekic Laskovic, M. Winter, Changing established belief on capacity fade mechanisms: thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under high voltage conditions. J. Phys. Chem. A. 121(3), 1521–1529 (2017)

    CAS  Google Scholar 

  19. J. Li, Z. Liu, Y. Wang, R. Wang, Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J. Alloys Compd. 834, 155150 (2020)

    Article  CAS  Google Scholar 

  20. C.H. Shen, Q. Wang, H.J. Chen, C.G. Shi, H.Y. Zhang, L. Huang, J.T. Li, S.G. Sun, In Situ Multitechnical Investigation into Capacity Fading of High-Voltage LiNi0.5Co0.2Mn0.3O2. ACS Appl. Mater. 8(51), 35323–35335 (2016)

    Article  CAS  Google Scholar 

  21. J.-H. Song, J. Bae, K.-W. Lee, I. Lee, K. Hwang, W. Cho, S.J. Hahn, S. Yoon, Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping. J Ind Eng Chem. 68, 124–128 (2018)

    Article  CAS  Google Scholar 

  22. S. Venkatraman, J. Choi, A. Manthiram, Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes. Electrochem commun. 6(8), 832–837 (2004)

    Article  CAS  Google Scholar 

  23. H.-J. Noh, S. Youn, C.S. Yoon, Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources. 233, 121–130 (2013)

    Article  CAS  Google Scholar 

  24. H.-H. Sun, A. Manthiram, Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-Ion batteries. Chem. Mater. 29(19), 8486–8493 (2017)

    Article  CAS  Google Scholar 

  25. Z. Tai, W. Zhu, M. Shi, Y. Xin, S. Guo, Y. Wu, Y. Chen, Y. Liu, Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries. J Colloid Interface Sci. 576, 468–475 (2020)

    Article  CAS  Google Scholar 

  26. S.F. Amalraj, R. Raman, A. Chakraborty, N. Leifer, R. Nanda, S. Kunnikuruvan, T. Kravchuk, J. Grinblat, V. Ezersky, R. Sun, F.L. Deepak, C. Erk, X. Wu, S. Maiti, H. Sclar, G. Goobes, D.T. Major, M. Talianker, B. Markovsky, D. Aurbach, Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance. Energy Stor. Mater. 42, 594–607 (2021)

    Google Scholar 

  27. S. Gao, B. Shi, J. Liu, L. Wang, C. Zhou, C. Guo, J. Zhang, W. Li, Boron doping and LiBO2 coating synergistically enhance the high-rate performance of LiNi06Co01Mn03O2 Cathode materials. ACS Sustain. Chem. Eng. 9(15), 5322–5333 (2021)

    Article  CAS  Google Scholar 

  28. W. Mo, Z. Wang, J. Wang, X. Li, H. Guo, W. Peng, G. Yan, Tuning the surface of LiNi08Co01Mn01O2 primary particle with lithium boron oxide toward stable cycling. Chem. Eng. J. 400, 125820 (2020)

    Article  CAS  Google Scholar 

  29. K.-J. Park, H.-G. Jung, L.-Y. Kuo, P. Kaghazchi, C.S. Yoon, Y.-K. Sun, Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-Ion Batteries. Adv. Energy Mater. 8(25), 18012 (2018)

    Article  Google Scholar 

  30. D.Y. Hwang, C.Y. Kang, J.R. Yoon, S.H. Lee, Reinforcing electrochemical performance of Ni-rich NCM cathode co-modified by mg-doping and Li3PO4-coating. Int. J. Energy Res. 46(11), 15244–15253 (2022)

    Article  CAS  Google Scholar 

  31. D.J. Li, H.T. Guo, S.H. Jiang, G.L. Zeng, W. Zhou, Z.A. Li, Microstructures and electrochemical performances of TiO2-coated Mg-Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life. New J. Chem. 45(41), 19446–19455 (2021)

    Article  CAS  Google Scholar 

  32. L. Xiao, X.C. Tang, Z. Ban, Z.L. Tang, H.N. Liu, C. Liu, Y.S. Lou, An Mg-Al dual doping strategy to enhance the structural stability and long cycle life of LiNi0.8Co0.1Mn0.1O2 cathode material. Ionics 28(7), 3101–3112 (2022)

    Article  CAS  Google Scholar 

  33. G. Ko, S. Park, W. Kim, K. Kwon, Synergistic effect of Na and Al co-doping on the electrochemical properties of Li Ni0.8Mn0.1Co0.1 O2 cathode materials for Li-ion batteries. J. Alloys Compd. 925, 16667 (2022)

    Article  Google Scholar 

  34. F.C. Li, G. Zhang, Z.L. Zhang, J. Yang, F.Y. Liu, M. Jia, L.X. Jiang, Regeneration of Al-doped LiNi0.5Co0.2Mn0.3O2 cathode material by simulated hydrometallurgy leachate of spent lithium-ion batteries. T Nonferr Metal Soc. 32(2), 593–603 (2022)

    Article  CAS  Google Scholar 

  35. L.S. Li, Z. Zhang, S.H. Fu, Z.Z. Liu, Y.M. Liu, Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J. Alloys Compd. 768, 582–590 (2018)

    Article  CAS  Google Scholar 

  36. B. Chu, L. You, G. Li, T. Huang, A. Yu, Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi0.6Co0.2Mn0.2O2 Cathode at 4.5 V. ACS Appl. Mater. Interfaces. 13(6), 7308–7316 (2021)

    Article  CAS  Google Scholar 

  37. W. Li, J. Zhang, Y. Zhou, W. Huang, X. Liu, Z. Li, M. Gao, Z. Chang, N. Li, J. Wang, S. Lu, X. Li, W. Wen, D. Zhu, Y. Lu, W. Zhuang, Regulating the grain orientation and surface structure of primary particles through tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials. ACS Appl. Mater. 12(42), 47513–47525 (2020)

    Article  CAS  Google Scholar 

  38. G.-T. Park, H.-H. Ryu, N.-Y. Park, C.S. Yoon, Y.-K. Sun, Tungsten doping for stabilization of Li[Ni090Co005Mn005]O2 cathode for Li-ion battery at high voltage. J. Power Source. 442, 2272 (2019)

    Article  Google Scholar 

  39. F. Wu, J. Tian, Y. Su, J. Wang, C. Zhang, L. Bao, T. He, J. Li, S. Chen, Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. 7(14), 7702–7708 (2015)

    Article  CAS  Google Scholar 

  40. A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6(1), 15010 (2016)

    Article  Google Scholar 

  41. W.-G. Ryu, H.-S. Shin, M.-S. Park, H. Kim, K.-N. Jung, J.-W. Lee, Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by surface tuning with phosphate. Ceram. Int. 45(11), 13942–13950 (2019)

    Article  CAS  Google Scholar 

  42. B.W. Xiao, X.L. Sun, Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Adv. Energy Mater. 8(29), 1123 (2018)

    Article  Google Scholar 

  43. S. Gao, X.W. Zhan, Y.T. Cheng, Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co01Mn0.1O2 positive electrode materials for Li-ion batteries. J. Power Sources. 410, 45–52 (2019)

    Article  Google Scholar 

  44. Y. Kim, H. Park, J.H. Warner, A. Manthiram, Unraveling the intricacies of residual lithium in High-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 6(3), 941–948 (2021)

    Article  CAS  Google Scholar 

  45. K. Park, D.J. Ham, S.Y. Park, J. Jang, D.H. Yeon, S. Moon, S.J. Ahn, High-Ni cathode material improved with Zr for stable cycling of Li-ion rechargeable batteries. RSC Adv. 10(45), 26756–26764 (2020)

    Article  CAS  Google Scholar 

  46. Q.P. Mayra, W.S. Kim, Agglomeration of Ni-Rich hydroxide in reaction crystallization: effect of taylor vortex dimension and intensity. Cryst. Growth Des. 15(4), 1726–1734 (2015)

    Article  CAS  Google Scholar 

  47. J.H. Duan, R.C. Zhang, Q.H. Zhu, H. Xiao, Q.S. Huang, The effect of controlling strategies of ph and ammonia concentration on preparing full concentration gradient ni08co01mn01(oh)(2) via coprecipitation in a pilot-scale reactor. Energy Technol. 8(5), 19014 (2020)

    Article  Google Scholar 

  48. J.M. Kim, S.M. Chang, J.H. Chang, W.S. Kim, Agglomeration of nickel/cobalt/manganese hydroxide crystals in Couette-Taylor crystallizer. Colloids Surf. A Physicochem. Eng. Asp. 384(1–3), 31–39 (2011)

    Article  CAS  Google Scholar 

  49. D. Ren, Y. Shen, Y. Yang, L.X. Shen, B.D.A. Levin, Y.C. Yu, D.A. Muller, H.D. Abruna, systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 9(41), 35811–35819 (2017)

    Article  CAS  Google Scholar 

  50. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)

    Article  CAS  Google Scholar 

  51. J.D. Steiner, L.Q. Mu, J. Walsh, M.M. Rahman, B. Zydlewski, F.M. Michel, H.L.L. Xing, D. Nordlund, F. Lin, Accelerated evolution of surface chemistry determined by temperature and cycling history in nickel-rich layered cathode materials. ACS Appl. Mater. Interfaces. 10(28), 23842–23850 (2018)

    Article  CAS  Google Scholar 

  52. Z.L. Yu, X.Y. Qu, T. Wan, A.C. Dou, Y. Zhou, X.Q. Peng, M.R. Su, Y.J. Liu, D.W. Chu, Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-Excess. ACS Appl. Mater. Interfaces. 12(36), 40393–40403 (2020)

    Article  CAS  Google Scholar 

  53. F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A. 4(41), 16073–16084 (2016)

    Article  CAS  Google Scholar 

  54. R. Wang, G.Y. Qian, T.C. Liu, M.F. Li, J.J. Liu, B.K. Zhang, W.M. Zhu, S.K. Li, W.G. Zhao, W.Y. Yang, X.B. Ma, Z.D. Fu, Y.T. Liu, J.B. Yang, L. Jin, Y.G. Xiao, F. Pan, Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery. Nano Energy 62, 709–717 (2019)

    Article  CAS  Google Scholar 

  55. E.B. Abebe, C.-C. Yang, S.-H. Wu, W.-C. Chien, Y.-J.J. Li, Effect of Li excess on electrochemical performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 cathode materials for Li-Ion batteries. ACS Appl. Energy Mater. 4(12), 14295–14308 (2021)

    Article  CAS  Google Scholar 

  56. J. Yang, Y.Y. Xia, Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li2MnO3. ACS Appl. Mater. Interfaces. 8(2), 1297–1308 (2016)

    Article  CAS  Google Scholar 

  57. J.C. Zhang, Z.Z. Yang, R. Gao, L. Gu, Z.B. Hu, X.F. Liu, Suppressing the Structure Deterioration of Ni-Rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with ni gradient concentration. ACS Appl. Mater. Interfaces. 9(35), 29794–29803 (2017)

    Article  CAS  Google Scholar 

  58. Y.X. Qian, P. Niehoff, M. Borner, M. Grutzke, X. Monnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J. Power Sources. 329, 31–40 (2016)

    Article  CAS  Google Scholar 

  59. M. Winter, The solid electrolyte interphase - the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223(10–11), 1395–1406 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National foreign specialized projects (DL2021023005L), Natural Science Foundation of Shandong Province (ZR2021ME219) and Jinan talent project (2020GXRC044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Feipeng Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chu, C., Qin, X. et al. The influence of surface lithium residue to the performance of LiNi0.9Co0.05Mn0.05O2 cathode materials. J. Korean Ceram. Soc. 60, 462–473 (2023). https://doi.org/10.1007/s43207-023-00292-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00292-7

Keywords

Navigation