Skip to main content
Log in

Electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3 and BaZr0.65Ce0.20Y0.15O3 composite cathodes on Y-doped barium–cerium–zirconium oxide solid electrolyte

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Various Ba0.5Sr0.5Co0.8Fe0.2O3–BaZr0.65Ce0.20Y0.15O3 composites have been prepared for cathode materials for intermediate-temperature solid oxide fuel cells. Their electrochemical properties on a barium–zirconium-cerate solid electrolyte have been investigated using 2-probe ac impedance measurement. Impedance spectra are measured to investigate their cathodic polarization resistances in cells in a symmetric configuration. The Ba0.5Sr0.5Co0.8Fe0.2O3–BaZr0.65Ce0.20Y0.15O3 composite fired at 900 °C shows low polarization resistance of ~ 0.16 Ω⋅cm2 at 700 °C, which is an improved value over the Ba0.5Sr0.5Co0.8Fe0.2O3 due to enhanced ionic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6(5), 433–455 (2002)

    Article  CAS  Google Scholar 

  2. S.P. Badwal, S, Stability of solid oxide fuel cell components. Solid State Ion 143(1), 39–46 (2001)

    Article  CAS  Google Scholar 

  3. Y. Ji, J.A. Kilner, M. Carolan, F, Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ion 176(9–10), 937–943 (2005)

    Article  CAS  Google Scholar 

  4. S.P. Jiang, J.G. Love, J.P. Zhang, M. Hoang, Y. Ramprakash, A.E. Hughes, S.P. Badwal, S, Electrochemical performance of LSM/zirconia-yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ion 121(1), 1–10 (1999)

    Article  CAS  Google Scholar 

  5. J.H. Choi, J.H. Jang, S.M. Oh, Microstructure and cathodic performance of La0.9Sr0.1MnO3/yttria-stabilized zirconia composite electrodes. Electrochim Acta 46(6), 867–874 (2001)

    Article  CAS  Google Scholar 

  6. G. Chen, Y. Gao, Y. Luo, R. Guo, Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte. Ceram Int 43(1), 304–1309 (2017)

    Article  Google Scholar 

  7. A.J. Abd Aziz, N.A. Baharuddin, M.R. Somalu, A. Muchtar, Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceram. Int. 46(15), 23314–23325 (2020)

    Article  CAS  Google Scholar 

  8. D. Clematis, A. Barbucci, S. Presto, M. Viviani, M. Carpanese, P, Electrocatalytic activity of perovskite-based cathodes for solid oxide fuel cells. Int. J. Hydrogen. Energy 44(12), 6212–6222 (2019)

    Article  CAS  Google Scholar 

  9. D. Rembelski, J.P. Viricelle, L. Combemale, M. Rieu, Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12(2), 256–264 (2012)

    Article  CAS  Google Scholar 

  10. J. Jung, S.T. Misture, D.D. Edwards, The electronic conductivity of Ba0.5Sr0.5CoxFe1-x O3-δ (BSCF:x=0 ~ 10) under different oxygen partial pressures. J. Electroceram 24(4), 261–269 (2010)

    Article  CAS  Google Scholar 

  11. Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Mater. Renew. Sustain. Energy 3(1978), 255–258 (2010)

    Google Scholar 

  12. W. Zhou, R. Ran, Z. Shao, Progress in understanding and development of Ba0.5Sr0.5CoxFe1-x O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 192(2), 231–246 (2009)

    Article  CAS  Google Scholar 

  13. Q.L. Liu, K.A. Khor, S. Chan, H, High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. J. Power Sources 161(1), 123–128 (2006)

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Liu, X. Huang, Z. Lu, W. Su, Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode prepared by screen printing. Solid State Ion 179(7–8), 250–255 (2008)

    Article  CAS  Google Scholar 

  15. Y. Guo, Y. Lin, R. Ran, Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. J. Power Sources 193(2), 400–407 (2009)

    Article  CAS  Google Scholar 

  16. B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang, G. Meng, Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ -BaZr0.1Ce0.7Y0.2O3-δ composite cathode. J. Power Sources 186(1), 58–61 (2009)

    Article  CAS  Google Scholar 

  17. P.S. Mahadik, A.N. Shirsat, B. Saha, N. Sitapure, D. Tyagi, S. Varma, B.N. Wani, S. Bharadwaj, R, Chemical compatibility study of BSCF cathode materials with proton-conducting BCY/BCZY/BZY electrolytes. J. Therm. Anal. Calorim. 137(6), 1857–1866 (2019)

    Article  CAS  Google Scholar 

  18. K. Wang, R. Ran, W. Zhou, H. Gu, Z. Shao, J. Ahn, Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ + Sm0.2Ce0.8O1.9 composite cathode. J. Power Sources 179(1), 60–68 (2008)

    Article  CAS  Google Scholar 

  19. W. Zhou, Z. Shao, R. Ran, P. Zeng, H. Gu, W. Jin, N. Xu, Ba0.5Sr0.5Co0.8Fe0.2O3-δ + LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. J. Power Sources 168(2), 330–337 (2007)

    Article  CAS  Google Scholar 

  20. S. Li, Z. Lü, B. Wei, X. Huang, J. Miao, Z. Liu, W. Su, Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ -Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys. Compd 448(1–2), 116–121 (2008)

    Article  CAS  Google Scholar 

  21. Y. Wang, S. Wang, Z. Wang, T. Wen, Z. Wen, Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ -CGO-Ag cathode for IT-SOFCs. J. Alloys. Compd 428(1–2), 286–289 (2007)

    Article  CAS  Google Scholar 

  22. W.X. Kao, M.C. Lee, T.N. Lin, C.H. Wang, Y.C. Chang, Fabrication and characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ -Gadolinia-doped ceria cathode for an anode-supported solid-oxide fuel cell. J. Power Sources 195(8), 2220–2223 (2010)

    Article  CAS  Google Scholar 

  23. U.A. Yusof, H.A. Rahman, Properties of BSCF-SDC composite cathode powder for low temperature solid oxide fuel cell. J. Phys. Conf. Ser. 1082(1), 012029 (2018)

    Article  Google Scholar 

  24. U.A. Yusop, H.A. Rahman, S.I. Abdullah, D. Panuh, Effect of milling process and calcination temperature on the properties of BSCF-SDC composite cathode. Key. Eng. Mater. 791, 74–80 (2018)

    Article  Google Scholar 

  25. Y.-M. Kim, P. Kim-Lohsoontorn, J.-M. Bae, Characterization and electrochemical performance of composite BSCF cathode for intermediate-temperature solid oxide fuel cell. J. Electrochem. Sci. Technol 2(1), 32–38 (2011)

    Article  CAS  Google Scholar 

  26. S.J. Lee, D.S. Kim, D. Kim, K, High-performance GdBaCo2O5+δ-Ce 0.9Gd0.1O1.95 composite cathode for solid oxide fuel cells. Curr. Appl. Phys 11(1 SUPPL.), 238–241 (2011)

    Article  Google Scholar 

  27. Q. Zhou, F. Wang, Y. Shen, T. He, Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195(8), 2174–2181 (2010)

    Article  CAS  Google Scholar 

  28. L. Zhang, X. Li, L. Zhang, H. Cai, J. Xu, L. Wang, W. Long, Improved thermal expansion and electrochemical performance of La0.4Sr0.6Co0.9Sb0.1O 3-δ -Ce0.8Sm0.2O1.9 composite cathode for IT-SOFCs. Solid State Sci. 91, 126–132 (2019)

    Article  CAS  Google Scholar 

  29. A.K. Baral, Y. Tsur, Sintering aid (ZnO) effect on proton transport in BaCe0.35Zr0.5Y0.15O3-δ and electrode phenomena studied by distribution function of relaxation times. J. Am. Ceram. Soc 102(1), 239–250 (2019)

    Article  CAS  Google Scholar 

  30. N. Bausá, J. Serra, M, Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells. RSC Adv. 9(36), 20677–20686 (2019)

    Article  Google Scholar 

  31. E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012)

    Article  CAS  Google Scholar 

  32. J. Hong, A. Bhardwaj, Y. Namgung, H. Bae, S. Song, J, Evaluation of the effects of nanocatalyst infiltration on the SOFC performance and electrode reaction kinetics using the transmission line model. J. Mater. Chem. A 8(44), 23473–23487 (2020)

    Article  CAS  Google Scholar 

  33. S. Miyoshi, A. Takeshita, S. Okada, S. Yamaguchi, Rate-determining elementary step of oxygen reduction reaction at (La, Sr)CoO3-based cathode surface. Solid State Ion 285, 202–208 (2016)

    Article  CAS  Google Scholar 

  34. R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20(30), 6218–6225 (2010)

    Article  CAS  Google Scholar 

  35. A.S. Habiballah, N. Osman, A.M.M. Jani, Microstructural investigation of BSCF-based cathode material for enhanced oxygen reduction reaction performance and electrode stability. Ceram Int. 46(14), 23262–23265 (2020)

    Article  CAS  Google Scholar 

  36. W. Zhou, B. An, R. Ran, Z. Shao, Electrochemical performance of SrSc0.2Co0.8O3−δ Cathode on Sm0.2Ce0.8O1.9 electrolyte for low temperature SOFCs. J. Electrochem. Soc 156(8), B884 (2009)

    Article  CAS  Google Scholar 

  37. W. Zhu, Z. Lü, S. Li, B. Wei, J. Miao, X. Huang, K. Chen, N. Ai, W. Su, Study on Ba0.5Sr0.5Co0.8Fe0.2O3-δ -Sm0.5Sr0.5CoO3-δ composite cathode materials for IT-SOFCs. J. Alloys. Compd 465(1–2), 274–279 (2008)

    Article  CAS  Google Scholar 

  38. S. Sun, Z. Cheng, Effects of H2O and CO2 on electrochemical behaviors of BSCF cathode for proton conducting IT-SOFC. J. Electrochem. Soc 164(2), F81–F88 (2017)

    Article  CAS  Google Scholar 

  39. B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang, G. Meng, Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode. J. Power Sources 186(1), 58–61 (2009)

    Article  CAS  Google Scholar 

  40. L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng, G. Meng, X. Liu, Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for proton-conducting solid oxide fuel cell cathode. Int. J. Hydrogen. Energy 35(8), 3769–3774 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This present research was supported by the research fund of Dankook University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jung Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Kim, HW., Yu, J.H. et al. Electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3 and BaZr0.65Ce0.20Y0.15O3 composite cathodes on Y-doped barium–cerium–zirconium oxide solid electrolyte. J. Korean Ceram. Soc. 59, 217–223 (2022). https://doi.org/10.1007/s43207-021-00169-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00169-7

Keywords

Navigation