Skip to main content
Log in

Sublethal pulmonary toxicity screening of silica nanoparticles in rats after direct intratracheal instillation

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

The present aimed to characterize the toxicity of silica nanoparticles in Sprague Dawley rats and determine the dose levels for a repeated-dose toxicity study. Silica nanoparticles (SiO2, 20 nm and 50 nm) were administered as a single intratracheal instillation of standardized SiO2 20 nm (low dose, 200 µg/mL; high dose, 400 µg/mL) and 50 nm (low dose, 200 µg/mL; high dose, 400 µg/mL). Each group consisted of five male rats. We documented the mortality rate, clinical signs, body weight, bronchoalveolar lavage fluid analysis, hematological values, serum chemistry values, organ weight, gross findings at necropsy, and histopathological assessments. Rats treated with 200 µg/mL and 400 µg/mL SiO2 50 nm exhibited a decreased mean corpuscular volume, while those treated with 400 µg/mL of SiO2 50 nm showed increases in absolute monocyte and absolute lymphocyte count as well as prothrombin time. In addition, rats treated with 400 µg/mL SiO2 20 nm and 50 nm presented reduced creatinine, alanine aminotransferase, and sodium levels. Therefore, a single intratracheal instillation of SiO2 20 nm and 50 nm elicited no toxicity up to a dose of 400 µg/mL, and the approximate lethal dose of this test substance exceeded 400 µg/mL in male Sprague Dawley rats under the present experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cho WS, Choi M, Han BS, Cho M, Oh J, Park K, Kim SJ, Kim SH, Jeong J (2007) Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175:24–33. https://doi.org/10.1016/j.toxlet.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010. https://doi.org/10.1007/s00204-017-1993-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brinch A, Hansen S, Hartmann N, Baun A (2016) EU regulation of nanobiocides: challenges in implementing the biocidal product regulation (BPR). Nanomaterials 6:33. https://doi.org/10.3390/nano6020033

    Article  CAS  PubMed Central  Google Scholar 

  4. Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol 2015:1–6. https://doi.org/10.1155/2015/852394

    Article  CAS  Google Scholar 

  5. Napierska D, Rabolli V, Thomassen LC, Dinsdale D, Princen C, Gonzalez L, Poels KL, Kirsch-Volders M, Lison D, Martens JA, Hoet PH (2012) Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol 25:828–883. https://doi.org/10.1021/tx200361v

    Article  CAS  PubMed  Google Scholar 

  6. Yang H, Wu QY, Li MY, Lao CS, Zhang YJ (2017) Pulmonary toxicity in rats caused by exposure to intratracheal instillation of SiO2 nanoparticles. Biomed Environ Sci 30(4):264–279. https://doi.org/10.3967/bes2017.036

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Chen J, Dong J, Jin Y (2004) Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicol Ind Health 20:21–27. https://doi.org/10.1191/0748233704th190oa

    Article  CAS  PubMed  Google Scholar 

  8. Lin Z, MaZhu-Ge LX, Zhang H, Lin B (2013) A comparative study of lung toxicity in rats induced by three types of Nanomaterials. Nanoscale Res Lett 8:521. https://doi.org/10.1186/1556-276X-8-521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim YH, Boykin E, Stevens T, Lavrich K, Gilmour MI (2014) Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnol 12:47. https://doi.org/10.1186/s12951-014-0047-3

    Article  CAS  Google Scholar 

  10. Bauer AT, Strozyk EA, Gorzelanny C, Westerhausen C, Desch A, Schneider MF, Schneider SW (2011) Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells. Biomaterials 32:8385–8393. https://doi.org/10.1016/j.biomaterials.2011.07.078

    Article  CAS  PubMed  Google Scholar 

  11. Irfan A, Cauchi M, Edmands W, Gooderham NJ, Njuguna J, Zhu H (2014) Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and 1H-NMR-based extracellular metabonomic assays. Toxicol Sci 138:354–364. https://doi.org/10.1093/toxsci/kfu009

    Article  CAS  PubMed  Google Scholar 

  12. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39. https://doi.org/10.1186/1743-8977-7-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu X, Cao W, Chang B, Zhang L, Qiao P, Li X, Si L, Niu Y, Song Y (2016) Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers. Int J Nanomed 11:1593–1605. https://doi.org/10.2147/IJN.S102020

    Article  CAS  Google Scholar 

  14. Niu YM, Zhu XL, Chang B, Tong ZH, Cao W, Qiao PH, Zhang LY, Zhao J, Song YG (2016) Nanosilica and polyacrylate/nanosilica: a comparative study of acute toxicity. Biomed Res Int 2016:9353275. https://doi.org/10.1155/2016/9353275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102. https://doi.org/10.1016/j.tox.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  16. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:44. https://doi.org/10.1186/s11671-018-2457-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nielsen E, Ostergaard G, Larsen JC (2008) Toxicological risk assessment of chemicals: a practical guide. CRC Press, Boca Raton. https://doi.org/10.1201/9781420006940

    Book  Google Scholar 

  18. Najahi-Missaoui W, Arnold RD, Cummings BS (2020) Safe nanoparticles: are we there yet. Int J Mol Sci 22:385. https://doi.org/10.3390/ijms22010385

    Article  CAS  PubMed Central  Google Scholar 

  19. Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356. https://doi.org/10.1021/es9010543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ortiz-Muñoz G, Looney MR (2015) Non-invasive intratracheal instillation in mice. Bio Protoc 5:1504. https://doi.org/10.21769/bioprotoc.1504

    Article  Google Scholar 

  21. Derelanko MJ, Auletta CS (2014) Handbook of Toxicology. CRC Press, Boca Raton. https://doi.org/10.1201/b16632

    Book  Google Scholar 

  22. Han ZZ, Xu HD, Kim KH, Bae JS, Lee JY, Gil KH, Lee JY, Woo SJ, Yoo HJ, Lee HK, Kim KH, Park CK, Zhang HS, Song SW (2010) Reference data of the main physiological parameters in control Sprague-Dawley rats from pre-clinical toxicity studies. Lab Anim Res 26:153–164. https://doi.org/10.5625/lar.2010.26.2.153

    Article  Google Scholar 

  23. Wallig MA, Bolon B, Haschek W, Rousseaux C (2017) Fundamentals of Toxicologic pathology. Academic Press, Cambridge. https://doi.org/10.1016/C2015-0-02486-8

    Book  Google Scholar 

  24. Chen YT, Lue PY, Chen PW, Chueh PJ, Tsai FJ, Liao JW (2021) Comparison of genotoxicity and pulmonary toxicity study of modified SiO2 nanomaterials. Appl Sci 11:11990. https://doi.org/10.3390/app112411990

    Article  CAS  Google Scholar 

  25. Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853. https://doi.org/10.1002/smll.200800461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2020R1F1A1054226, NRF-NRF‑2015M3A7B6027948 and NRF-2016M3A9C4953144), a grant from the Ministry of Food and Drug Safety in 2021 (21162MFDS045) and the Korea Institute of Toxicology (KIT) Research Program (No. 1711159817).

Funding

This study was funded by the Department of Predictive Toxicology at the Korea Institute of Toxicology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Yun Han.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HY. Sublethal pulmonary toxicity screening of silica nanoparticles in rats after direct intratracheal instillation. Toxicol Res. 38, 523–530 (2022). https://doi.org/10.1007/s43188-022-00135-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-022-00135-3

Keywords

Navigation