Skip to main content

Advertisement

Log in

Adrenergic blocker terazosin potentially suppresses acetaminophen induced-acute liver injury in animal models via CYP2E1 gene

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Drug induced liver injury (DILI) is a global issue and acetaminophen (APAP) is considered as the main cause of this. Due to increasing incidents of DILI, current study attempted to investigate an alternative but better role of terazosin (alpha-adrenergic blocker) in APAP-induced acute liver injury in an animal model using New Zealand rabbits. APAP (1 g/kg of body weight) was given to New Zealand rabbits either with or without terazosin (0.5 mg/kg) and serum was collected after 4 h. Serum alanine transaminase (ALT), alkaline phosphatase (ALP) and ferritin level were determined to analyze the liver functioning of treated rabbits. Furthermore, total cholesterol (TC), total lipids (TL), high-density lipoproteins (HDL), low-density lipoprotein (LDL) and triglycerides (TG) levels were estimated to find any change in lipid profile of the treated animals. Moreover, the urea and creatinine levels assayed the actual renal functionality. To identify any modification in gene expression, qPCR of cytochrome P2E1 (CYP2E1) was performed. Terazosin in combination with APAP enhanced liver functioning by reducing the levels of liver injury markers viz. ALP and ALT, while lipid profile was also lowered by down regulation of TC, TL, LDL and TG with enhanced HDL levels. It caused significant down regulation of expression level of CYP2E1. It is concluded that terazosin has better effects induced on the recovery of normal liver functioning, by improving the liver profile, lipid profile and renal functioning both at tissue and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang A, Sun H, Wang X (2013) Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem 63:570–577. https://doi.org/10.1016/j.ejmech.2012.12.062

    Article  CAS  PubMed  Google Scholar 

  2. Bernal W, Wendon J (2013) Acute liver failure. N Engl J Med 369:2525–2534. https://doi.org/10.1056/nejmra1208937

    Article  CAS  PubMed  Google Scholar 

  3. Vuppalanchi R, Liangpunsakul S, Chalasani N (2007) Etiology of new-onset jaundice: how often is it caused by idiosyncratic drug-induced liver injury in the United States? Am J Gastroenterol 102:558–562. https://doi.org/10.1111/j.1572-0241.2006.01019.x

    Article  PubMed  Google Scholar 

  4. Teschke R, Frenzel C, Wolff A, Eickhoff A, Schulze J (2014) Drug induced liver injury: accuracy of diagnosis in published reports. Ann Hepatol 13:248–255. https://doi.org/10.1016/S1665-2681(19)30888-9

    Article  PubMed  Google Scholar 

  5. Vliegenthart ADB, Tucker CS, Del Pozo J, Dear JW (2014) Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol 78:1217–1227. https://doi.org/10.1111/bcp.12408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hussaini SH, Farrington EA (2007) Idiosyncratic drug-induced liver injury: an overview. Expert Opin Drug Saf 6:673–684. https://doi.org/10.1517/14740338.6.6.673

    Article  CAS  PubMed  Google Scholar 

  7. Lee WM, Hynan LS, Rossaro L, Fontana RJ, Stravitz RT, Larson AM, Davern TJ, Murray NG, McCashland T, Reisch JS, Robuck PR (2009) Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 137:856-864.e851. https://doi.org/10.1053/j.gastro.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Plauth M, Cabré E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J, DGEM, Ferenci P, Holm E, Dahl SV, Müller MJ, Nolte W, ESPEN (2006) ESPEN guidelines on enteral nutrition: liver disease. Clin Nutr 25:285–294. https://doi.org/10.1016/j.clnu.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  9. Kheradpezhouh E, Panjehshahin MR, Miri R, Javidnia K, Noorafshan A, Monabati A, Dehpour AR (2010) Curcumin protects rats against acetaminophen-induced hepatorenal damages and shows synergistic activity with N-acetylcysteine. Eur J Pharmacol 628:274–281. https://doi.org/10.1016/j.ejphar.2009.11.027

    Article  CAS  PubMed  Google Scholar 

  10. Yang R, Miki K, He X, Killeen ME, Fink MP (2009) Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity. Crit Care 13:R55. https://doi.org/10.1186/cc7782

    Article  PubMed  PubMed Central  Google Scholar 

  11. Panackel C, Thomas R, Sebastian B, Mathai S (2015) Recent advances in management of acute liver failure. Indian J Crit Care Med 19:27. https://doi.org/10.4103/0972-5229.148636

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA (2002) Recent patterns of medication use in the ambulatory adult population of the United States. JAMA 287:337. https://doi.org/10.1001/jama.287.3.337

    Article  PubMed  Google Scholar 

  13. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 122:1574–1583. https://doi.org/10.1172/jci59755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328. https://doi.org/10.1093/toxsci/67.2.322

    Article  CAS  PubMed  Google Scholar 

  15. Kon K, Kim JS, Jaeschke H, Lemasters JJ (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170–1179. https://doi.org/10.1002/hep.20437

    Article  CAS  PubMed  Google Scholar 

  16. Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116. https://doi.org/10.1016/j.jhep.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  17. Sadiq F, Channa IS, Safdar M, Junejo Y, Khailany RA, Ahktar MA, Saeed M, Babar N, Babar ME, Ozaslan M, Gondal MA (2019) Hepatoprotective effects of arabica coffee beans in paracetamol induced hepatotoxic animal models. Int J Biosci 15:340–351. https://doi.org/10.12692/ijb/15.1.340-351

  18. Liudmila LM, Katrin S, Caroline FT, Garret AF, Russ BA, Teri EK (2015) PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 25:416–426. https://doi.org/10.1097/FPC.0000000000000150

    Article  CAS  Google Scholar 

  19. Katzung BG, Masters S, Trevor AJ (2012) Basic and clinical pharmacology (LANGE Basic Science). McGraw-Hill Education, New York

    Google Scholar 

  20. Christensen M, Bruskewitz R (1990) Clinical manifestations of benign prostatic hyperplasia and indications for therapeutic intervention. Urol Clin N Am 17:509–516. https://doi.org/10.1016/S0094-0143(21)00964-2

    Article  CAS  Google Scholar 

  21. Ernst E, Pittler MH (1998) Yohimbine for erectile dysfunction: a systematic review and meta-analysis of randomized clinical trials. J Urol 159:433–436. https://doi.org/10.1016/s0022-5347(01)63942-9

    Article  CAS  PubMed  Google Scholar 

  22. Messerli FH (2001) Doxazosin and congestive heart failure. J Am Coll Cardiol 38:1295–1296. https://doi.org/10.1016/S0735-1097(01)01534-0

    Article  CAS  PubMed  Google Scholar 

  23. Khoury AF (1991) α-Blocker therapy of hypertension. JAMA 266:394. https://doi.org/10.1001/jama.1991.03470030094030

    Article  CAS  PubMed  Google Scholar 

  24. Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research–issues to consider for rodents and rabbits. ILAR J 47:283–293. https://doi.org/10.1093/ilar.47.4.283

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed J (2014) A significant hepatotoxicity associated with paracetamol overdose in the absence of kidney injury in rabbits. Int J Basic Clin Pharmacol 3:1043–1047. https://doi.org/10.5455/2319-2003.ijbcp20141216

    Article  Google Scholar 

  26. Sabina EP, Pragasam SJ, Kumar S, Rasool M (2011) 6-Gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice. Zhong Xi Yi Jie He Xue Bao 9:1264–1269. https://doi.org/10.3736/jcim20111116

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Liu H, Cheng F (2013) Fangjihuangqi Tang improved lower urinary tract dysfunction in benign prostatic hyperplasia rats model. J Tradit Chin Med 33:349–354. https://doi.org/10.1016/s0254-6272(13)60177-6

    Article  PubMed  Google Scholar 

  28. Burtis CA, Ashwood ER, Bruns DE (2012) Preface tietz textbook of clinical chemistry and molecular diagnostics. Elsevier, Amsterdam, p xvi

    Book  Google Scholar 

  29. Zilva JF, Pannall PR, Mayne PD (1975) Clinical chemistry in diagnosis and treatment. Lloyd-Luke, London

    Google Scholar 

  30. Talke H, Schubert G (1965) Enzymatische harnstoffbestimmung in blut und serum im optischen test nachwarburg. J Mol Med 43:174–175. https://doi.org/10.1007/BF01484513

    Article  CAS  Google Scholar 

  31. Ishitsuka Y, Kondo Y, Kadowaki D (2020) Toxicological property of acetaminophen: the dark side of a safe antipyretic/analgesic drug? Biol Pharm Bull 43:195–206. https://doi.org/10.1248/bpb.b19-00722

  32. Daly FF, Fountain JS, Murray L, Graudins A, Buckley NA (2008) Guidelines for the management of paracetamol poisoning in Australia and New Zealand-explanation and elaboration. Med J Aust 188:296. https://doi.org/10.5694/j.1326-5377.2008.tb01625.x

    Article  PubMed  Google Scholar 

  33. Sabaté M, Ibáñez L, Pérez E, Vidal X, Buti M, Xiol X, Mas A, Guarner C, Forné M, Solà R, Castellote J, Rigau J, Laporte J-R (2011) Paracetamol in therapeutic dosages and acute liver injury: causality assessment in a prospective case series. BMC Gastroenterol 11:1. https://doi.org/10.1186/1471-230x-11-80

    Article  Google Scholar 

  34. Rehman JU, Aktar N, Khan MY, Ahmad K, Ahmad M, Sultana S, Asif HM (2015) Phytochemical screening and hepatoprotective effect of Alhagi maurorum boiss (leguminosae) against paracetamol-induced hepatotoxicity in rabbits. Trop J Pharm Res 14:1029. https://doi.org/10.4314/tjpr.v14i6.13

    Article  CAS  Google Scholar 

  35. Anastasiou OE, Kälsch J, Hakmouni M, Kucukoglu O, Heider D, Korth J, Manka P, Sowa J, Bechmann L, Saner FH, Paul A, Gerken G, Baba HA, Canbay A (2017) Low transferrin and high ferritin concentrations are associated with worse outcome in acute liver failure. Liver Int 37:1032–1041. https://doi.org/10.1111/liv.13369

    Article  CAS  PubMed  Google Scholar 

  36. Prieto J, Barry M, Sherlock S (1975) Serum ferritin in patients with iron overload and with acute and chronic liver diseases. Gastroenterology 68:525–533. https://doi.org/10.1016/S0016-5085(75)80092-8

    Article  CAS  PubMed  Google Scholar 

  37. Madi Almajwal A, Farouk Elsadek M (2015) Lipid-lowering and hepatoprotective effects of vitis viniferadried seeds on paracetamol-induced hepatotoxicity in rats. Nutr Res Pract 9:37. https://doi.org/10.4162/nrp.2015.9.1.37

    Article  CAS  PubMed  Google Scholar 

  38. Rifkind BM (1984) Lipid research clinics coronary primary prevention trial: results and implications. Am J Cardiol 54:30–34. https://doi.org/10.1016/0002-9149(84)90854-3

    Article  Google Scholar 

  39. Castelli WP, Doyle JT, Gordon T, Hames CG, Hjortland MC, Hulley SB, Kagan A, Zukel WJ (1977) HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation 55:767–772. https://doi.org/10.1161/01.cir.55.5.767

    Article  CAS  PubMed  Google Scholar 

  40. Deger G (1986) Effect of terazosin on serum lipids. Am J Med 80:82–85. https://doi.org/10.1016/0002-9343(86)90858-2

    Article  CAS  PubMed  Google Scholar 

  41. Leren P, Helgeland A, Holme I, Foss PO, Hjermann I, Lund-Larsen PG (1980) Effect of propranolol and prazosin on blood lipids. Lancet 316:4–6. https://doi.org/10.1016/s0140-6736(80)92888-3

    Article  Google Scholar 

  42. Kher K, Makker S (1987) Acute renal failure due to acetaminophen ingestion without concurrent hepatotoxicity. Am J Med 82:1280–1281. https://doi.org/10.1016/0002-9343(87)90254-3

    Article  CAS  PubMed  Google Scholar 

  43. Thomas SHL (1993) Paracetamol (acetaminophen) poisoning. Pharmacol Ther 60:91–120. https://doi.org/10.1016/0163-7258(93)90023-7

    Article  CAS  PubMed  Google Scholar 

  44. Pedraza-Chaverrı́ J, Barrera D, Hernández-Pando R, Medina-Campos ON, Cruz C, Murguı́a F, Juárez-Nicolás C, Correa-Rotter R, Torres N, Tovar AR (2004) Soy protein diet ameliorates renal nitrotyrosine formation and chronic nephropathy induced by puromycin aminonucleoside. Life Sci 74:987–999. https://doi.org/10.1016/j.lfs.2003.07.045

    Article  CAS  PubMed  Google Scholar 

  45. Yang D, Lin S, Yang D, Wei L, Shang W (2012) Effects of short- and long-term hypercholesterolemia on contrast-induced acute kidney injury. Am J Nephrol 35:80–89. https://doi.org/10.1159/000335077

    Article  CAS  PubMed  Google Scholar 

  46. Lee SST, Buters JTM, Pineau T, Fernandez-Salguero P, Gonzalez FJ (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271:12063–12067. https://doi.org/10.1074/jbc.271.20.12063

    Article  CAS  PubMed  Google Scholar 

  47. Bièche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I (2007) Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 17:731–742. https://doi.org/10.1097/fpc.0b013e32810f2e58

    Article  PubMed  Google Scholar 

  48. Prasad JS, Chen N, YuXlu L, Goon DJW, Holtzman JL (1990) Effects of ethanol and inhibitors on the binding and metabolism of acetaminophen and N-acetyl-p-benzoquinone imine by hepatic microsomes from control and ethanol-treated rats. Biochem Pharmacol 40:1989–1995. https://doi.org/10.1016/0006-2952(90)90228-d

    Article  CAS  PubMed  Google Scholar 

  49. Albillos A, Lledó JL, Rossi I, Pérez-Páramo M, Tabuenca MJ, Bañares R, Iborra J, Garrido A, Escartín P, Bosch J (1995) Continuous prazosin administration in cirrhotic patients: effects on portal hemodynamics and on liver and renal function. Gastroenterology 109:1257–1265. https://doi.org/10.1016/0016-5085(95)90586-3

    Article  CAS  PubMed  Google Scholar 

  50. Randle LE, Sathish JG, Kitteringham NR, Macdonald I, Williams DP, Park BK (2008) α1-Adrenoceptor antagonists prevent paracetamol-induced hepatotoxicity in mice. Br J Pharmacol 153:820–830. https://doi.org/10.1038/sj.bjp.0707620

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by departmental research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Safdar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmat, Z., Channa, I.S., Safdar, M. et al. Adrenergic blocker terazosin potentially suppresses acetaminophen induced-acute liver injury in animal models via CYP2E1 gene. Toxicol Res. 38, 323–330 (2022). https://doi.org/10.1007/s43188-021-00116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-021-00116-y

Keywords

Navigation