Skip to main content

Advertisement

Log in

Interface of DNA Repair and Metabolism

  • Immunometabolism (NOS Câmara, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

DNA is naturally very unstable and several agents are capable of damaging and altering its structure, thus leading to several negative consequences. Therefore, this review seeks to better understand the relationship between different DNA repair mechanisms and metabolic pathways, and how such a relationship can influence the outcome of different human inflammatory diseases.

Recent Findings

Studies have shown that factors involved in DNA repair are also involved in the regulation of cellular metabolism in response to DNA damage. Indeed, it was demonstrated that cells deficient in DNA repair have abrupt rewiring of cell metabolism. Additionally, oxidative stress observed in several human disorders increase DNA damage that contributes in metabolic changes and diseases progression.

Summary

DNA molecule is daily exposed to several types of damages and, in mammal cells, the DNA damage response (DDR) is responsible to monitor and repair genotoxic stress. The activation of DDR mostly depends on the DNA damage type and involves the activation of sensors, transducers, and effector proteins. The effector protein pathways are closely linked to several cell biology processes, such as apoptosis, senescence, cell cycle control, inflammatory response, and gene transcriptions. Recently, it was demonstrated that DDR genes are involved in cell metabolism and contribute to DNA repair and cell survival. Understanding as DNA damage impacts in cell function is important to comprehend and treat several human inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goubet A, Chardon A, Kumar P, Sharma PK, Veedu RN. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids. Bioorg Med Chem Lett. 2013;23(3):761–3.

    CAS  PubMed  Google Scholar 

  2. Watson JD, Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953;18:123–31.

    CAS  PubMed  Google Scholar 

  3. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair. 2016;38:94–101.

    PubMed  Google Scholar 

  5. Kadhim MA, Hill MA. Non-targeted effects of radiation exposure: recent advances and implications. Radiat Prot Dosim. 2015;166(1–4):118–24.

    CAS  Google Scholar 

  6. Friedberg EC, McDaniel LD, Schultz RA. The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev. 2004;14(1):5–10.

    CAS  PubMed  Google Scholar 

  7. Wardman P. The importance of radiation chemistry to radiation and free radical biology (the 2008 Silvanus Thompson memorial lecture). Br J Radiol. 2009;82(974):89–104.

    CAS  PubMed  Google Scholar 

  8. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108(3):362–9.

    CAS  PubMed  Google Scholar 

  9. Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24.

    CAS  PubMed  Google Scholar 

  10. Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: from DNA lesions to proteins. Genet Mol Biol. 2020;43(1 suppl. 1):e20190104.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Varghese AJ. Photochemistry of nucleic acids and their constituents. Photophysiology. 1972;7:207–74.

    CAS  Google Scholar 

  12. Mitchell DL, Nairn RS. The biology of the (6-4) photoproduct. Photochem Photobiol. 1989;49(6):805–19.

    CAS  PubMed  Google Scholar 

  13. Davies RJ. Royal Irish Academy Medal Lecture. Ultraviolet radiation damage in DNA. Biochem Soc Trans. 1995;23(2):407–18.

    CAS  PubMed  Google Scholar 

  14. Hammons GJ, Milton D, Stepps K, Guengerich FP, Tukey RH, Kadlubar FF. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes. Carcinogenesis. 1997;18(4):851–4.

    CAS  PubMed  Google Scholar 

  15. Schoket B. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mutat Res. 1999;424(1–2):143–53.

    CAS  PubMed  Google Scholar 

  16. Phillips DH. Fifty years of benzo(a)pyrene. Nature. 1983;303(5917):468–72.

    CAS  PubMed  Google Scholar 

  17. Kunkel TA. Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol. 2009;74:91–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Loeb LA, Monnat RJ Jr. DNA polymerases and human disease. Nat Rev Genet. 2008;9(8):594–604.

    CAS  PubMed  Google Scholar 

  19. Waters TR, Swann PF. Kinetics of the action of thymine DNA glycosylase. J Biol Chem. 1998;273(32):20007–14.

    CAS  PubMed  Google Scholar 

  20. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–92.

    CAS  PubMed  Google Scholar 

  21. Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 2000;65:127–33.

    CAS  PubMed  Google Scholar 

  22. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272(31):19095–8.

    CAS  PubMed  Google Scholar 

  23. Cadet J, Ravanat JL, TavernaPorro M, Menoni H, Angelov D. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 2012;327(1–2):5–15.

    CAS  PubMed  Google Scholar 

  24. Cadet J, Douki T, Ravanat JL. Measurement of oxidatively generated base damage in cellular DNA. Mutat Res. 2011;711(1–2):3–12.

    CAS  PubMed  Google Scholar 

  25. Cadet J, Wagner JR. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys. 2014;557:47–54.

    CAS  PubMed  Google Scholar 

  26. Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003;531(1–2):37–80.

    CAS  PubMed  Google Scholar 

  27. Dizdaroglu M, Rao G, Halliwell B, Gajewski E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys. 1991;285(2):317–24.

    CAS  PubMed  Google Scholar 

  28. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.

    CAS  PubMed  Google Scholar 

  29. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995;18(6):1033–77.

    CAS  PubMed  Google Scholar 

  30. Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP. Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem. 1981;256(16):8608–15.

    CAS  PubMed  Google Scholar 

  31. Okoyama S, Kitao Y. Inhibition of chromosome repair by caffeine or isonicotinic acid hydrazide on chromosome damage induced by mitomycin C in human lymphocytes. Mutat Res. 1981;81(1):75–80.

    CAS  PubMed  Google Scholar 

  32. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33.

    CAS  PubMed  Google Scholar 

  33. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.

    CAS  PubMed  Google Scholar 

  34. Liu Y, Li Y, Lu X. Regulators in the DNA damage response. Arch Biochem Biophys. 2016;594:18–25.

    CAS  PubMed  Google Scholar 

  35. George J, Castellazzi M, Buttin G. Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and lon strains and permit the expression of mutator properties of tif. Mol Gen Genet. 1975;140(4):309–32.

    CAS  PubMed  Google Scholar 

  36. Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A. 1980;77(12):7315–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, TO C, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159.

    PubMed  PubMed Central  Google Scholar 

  38. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9.

    CAS  PubMed  Google Scholar 

  39. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.

    CAS  PubMed  Google Scholar 

  40. Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy. 2013;9(5):808–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015;15(3):166–80.

    CAS  PubMed  Google Scholar 

  42. Casadevall M, Kortenkamp A. The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen. Carcinogenesis. 1995;16(4):805–9.

    CAS  PubMed  Google Scholar 

  43. Matsuno Y, Atsumi Y, Shimizu A, Katayama K, Fujimori H, Hyodo M, et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat Commun. 2019;10(1):3925.

    PubMed  PubMed Central  Google Scholar 

  44. Casorelli I, Russo MT, Bignami M. Role of mismatch repair and MGMT in response to anticancer therapies. Anti Cancer Agents Med Chem. 2008;8(4):368–80.

    CAS  Google Scholar 

  45. Liu L, Taverna P, Whitacre CM, Chatterjee S, Gerson SL. Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin Cancer Res. 1999;5(10):2908–17.

    CAS  PubMed  Google Scholar 

  46. Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids. 2010;2010:543531.

    PubMed  PubMed Central  Google Scholar 

  47. Crook TR, Souhami RL, McLean AE. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res. 1986;46(10):5029–34.

    CAS  PubMed  Google Scholar 

  48. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104(12):3746–53.

    CAS  PubMed  Google Scholar 

  49. Pascucci B, Russo MT, Crescenzi M, Bignami M, Dogliotti E. The accumulation of MMS-induced single strand breaks in G1 phase is recombinogenic in DNA polymerase beta defective mammalian cells. Nucleic Acids Res. 2005;33(1):280–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Meador JA, Zhao M, Su Y, Narayan G, Geard CR, Balajee AS. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents. Oncogene. 2008;27(43):5662–71.

    CAS  PubMed  Google Scholar 

  51. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12(2):104–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Woods D, Turchi JJ. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther. 2013;14(5):379–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frankenberg-Schwager M, Gebauer A, Koppe C, Wolf H, Pralle E, Frankenberg D. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Radiat Res. 2009;171(3):265–73.

    CAS  PubMed  Google Scholar 

  54. Hoffman EA, McCulley A, Haarer B, Arnak R, Feng W. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription. Genome Res. 2015;25(3):402–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen BP, Li M, Asaithamby A. New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress. Cancer Lett. 2012;327(1–2):103–10.

    CAS  PubMed  Google Scholar 

  57. Kong X, Shen Y, Jiang N, Fei X, Mi J. Emerging roles of DNA-PK besides DNA repair. Cell Signal. 2011;23(8):1273–80.

    CAS  PubMed  Google Scholar 

  58. Graham TG, Walter JC, Loparo JJ. Two-stage synapsis of DNA ends during non-homologous end joining. Mol Cell. 2016;61(6):850–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019;21(12):1468–78.

    CAS  PubMed  Google Scholar 

  60. Burger K, Ketley RF, Gullerova M. Beyond the trinity of ATM, ATR, and DNA-PK: multiple kinases shape the DNA damage response in concert with RNA metabolism. Front Mol Biosci. 2019;6:61.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.

    CAS  PubMed  Google Scholar 

  62. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    CAS  PubMed  Google Scholar 

  63. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434(7033):605–11.

    CAS  PubMed  Google Scholar 

  64. Guo Z, Kumagai A, Wang SX, Dunphy WG. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev. 2000;14(21):2745–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruiz S, Mayor-Ruiz C, Lafarga V, Murga M, Vega-Sendino M, Ortega S, et al. A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol Cell. 2016;62(2):307–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreno NC, Garcia CCM, Rocha CRR, Munford V, Menck CFM. ATR/Chk1 pathway is activated by oxidative stress in response to UVA light in human xeroderma pigmentosum variant cells. Photochem Photobiol. 2019;95(1):345–54.

    CAS  PubMed  Google Scholar 

  67. Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci U S A. 2007;104(50):19855–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ford JM. Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat Res. 2005;577(1–2):195–202.

    CAS  PubMed  Google Scholar 

  69. Lerner LK, Francisco G, Soltys DT, Rocha CR, Quinet A, Vessoni AT, et al. Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Res. 2017;45(3):1270–80.

    CAS  PubMed  Google Scholar 

  70. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005;65(1):177–85.

    CAS  PubMed  Google Scholar 

  71. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64(7):2627–33.

    CAS  PubMed  Google Scholar 

  72. Aird KM, Worth AJ, Snyder NW, Lee JV, Sivanand S, Liu Q, et al. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep. 2015;11(6):893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cosentino C, Grieco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011;30(3):546–55.

    CAS  PubMed  Google Scholar 

  74. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brace LE, Vose SC, Stanya K, Gathungu RM, Marur VR, Longchamp A, et al. Increased oxidative phosphorylation in response to acute and chronic DNA damage. NPJ Aging Mech Dis. 2016;2:16022.

    PubMed  PubMed Central  Google Scholar 

  77. Jiang Y, Qian X, Shen J, Wang Y, Li X, Liu R, et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol. 2015;17(9):1158–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Russo G, Landi R, Pezone A, Morano A, Zuchegna C, Romano A, et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci Rep. 2016;6:33222.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002;132(8 Suppl):2333S–5S.

    CAS  PubMed  Google Scholar 

  80. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–50.

    CAS  PubMed  Google Scholar 

  81. Sivanand S, Rhoades S, Jiang Q, Lee JV, Benci J, Zhang J, et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell. 2017;67(2):252–65 e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014;2:23.

    PubMed  PubMed Central  Google Scholar 

  84. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546(7658):381–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mehrmohamadi M, Mentch LK, Clark AG, Locasale JW. Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat Commun. 2016;7:13666.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Richman S. Deficient mismatch repair: read all about it (review). Int J Oncol. 2015;47(4):1189–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kato N, Kawasoe Y, Williams H, Coates E, Roy U, Shi Y, et al. Sensing and processing of DNA interstrand crosslinks by the mismatch repair pathway. Cell Rep. 2017;21(5):1375–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98.

    CAS  PubMed  Google Scholar 

  89. Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012633.

    PubMed  PubMed Central  Google Scholar 

  90. Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem. 2000;275(47):36498–501.

    CAS  PubMed  Google Scholar 

  91. Flores-Rozas H, Clark D, Kolodner RD. Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet. 2000;26(3):375–8.

    CAS  PubMed  Google Scholar 

  92. Kleczkowska HE, Marra G, Lettieri T, Jiricny J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev. 2001;15(6):724–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018;189:45–62.

    CAS  PubMed  Google Scholar 

  94. Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma. 2015;124(4):443–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.

    CAS  PubMed  Google Scholar 

  96. Kim YJ, Wilson DM 3rd. Overview of base excision repair biochemistry. Curr Mol Pharmacol. 2012;5(1):3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Masuda Y, Bennett RA, Demple B. Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product. J Biol Chem. 1998;273(46):30352–9.

    CAS  PubMed  Google Scholar 

  98. Wilson DM 3rd, Takeshita M, Grollman AP, Demple B. Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J Biol Chem. 1995;270(27):16002–7.

    CAS  PubMed  Google Scholar 

  99. Wilson SH, Kunkel TA. Passing the baton in base excision repair. Nat Struct Biol. 2000;7(3):176–8.

    CAS  PubMed  Google Scholar 

  100. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81.

    CAS  PubMed  Google Scholar 

  101. Krasikova YS, Rechkunova NI, Maltseva EA, Lavrik OI. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair. PLoS One. 2018;13(1):e0190782.

    PubMed  PubMed Central  Google Scholar 

  102. Menck CF, Munford V. DNA repair diseases: what do they tell us about cancer and aging? Genet Mol Biol. 2014;37(1 Suppl):220–33.

    CAS  PubMed  Google Scholar 

  103. Houten BV, Kuper J, Kisker C. Role of XPD in cellular functions: to TFIIH and beyond. DNA repair. 2016;44:136–42.

    CAS  PubMed  Google Scholar 

  104. Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 2009;28(8):1111–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kemp MG, Gaddameedhi S, Choi JH, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem. 2014;289(38):26574–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21(3):453–60.

    PubMed  Google Scholar 

  107. Berquist BR, Wilson DM 3rd. Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett. 2012;327(1–2):61–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Melis JP, van Steeg H, Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal. 2013;18(18):2409–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.

    CAS  PubMed  Google Scholar 

  110. Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, et al. The key role of UVA-light induced oxidative stress in human xeroderma pigmentosum variant cells. Free Radic Biol Med. 2019;131:432–42.

    CAS  PubMed  Google Scholar 

  111. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30(1–2):42–59.

    CAS  Google Scholar 

  112. Hultberg B, Hultberg M. High glutathione turnover in human cell lines revealed by acivicin inhibition of gamma-glutamyltranspeptidase and the effects of thiol-reactive metals during acivicin inhibition. Clin Chim Acta. 2004;349(1–2):45–52.

    CAS  PubMed  Google Scholar 

  113. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17(12):1556–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med. 2013;210(8):1529–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015;47(12):1475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McAdam E, Brem R, Karran P. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. Mol Cancer Res. 2016;14(7):612–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Karran P, Brem R. Protein oxidation, UVA and human DNA repair. DNA Repair. 2016;44:178–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Guven M, Brem R, Macpherson P, Peacock M, Karran P. Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells. J Invest Dermatol. 2015;135(11):2834–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Loft S, Larsen PN, Rasmussen A, Fischer-Nielsen A, Bondesen S, Kirkegaard P, et al. Oxidative DNA damage after transplantation of the liver and small intestine in pigs. Transplantation. 1995;59(1):16–20.

    CAS  PubMed  Google Scholar 

  121. Willy C, Dahouk S, Starck C, Kaffenberger W, Gerngross H, Plappert UG. DNA damage in human leukocytes after ischemia/reperfusion injury. Free Radic Biol Med. 2000;28(1):1–12.

    CAS  PubMed  Google Scholar 

  122. Moroni F. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol. 2008;8(1):96–103.

    CAS  PubMed  Google Scholar 

  123. Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25(3):235–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364(7):656–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Semenza GL. Life with oxygen. Science. 2007;318(5847):62–4.

    CAS  PubMed  Google Scholar 

  127. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.

    CAS  PubMed  Google Scholar 

  128. Ikeda H, Hirato J, Suzuki N, Kuroiwa M, Maruyama K, Tsuchida Y. Detection of hepatic oxidative DNA damage in patients with hepatoblastoma and children with non-neoplastic disease. Med Pediatr Oncol. 2001;37(6):505–10.

    CAS  PubMed  Google Scholar 

  129. Oliva MR, Ripoll F, Muniz P, Iradi A, Trullenque R, Valls V, et al. Genetic alterations and oxidative metabolism in sporadic colorectal tumors from a Spanish community. Mol Carcinog. 1997;18(4):232–43.

    CAS  PubMed  Google Scholar 

  130. Nagashima M, Tsuda H, Takenoshita S, Nagamachi Y, Hirohashi S, Yokota J, et al. 8-hydroxydeoxyguanosine levels in DNA of human breast cancer are not significantly different from those of non-cancerous breast tissues by the HPLC-ECD method. Cancer Lett. 1995;90(2):157–62.

    CAS  PubMed  Google Scholar 

  131. Malins DC, Haimanot R. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 1991;51(19):5430–2.

    CAS  PubMed  Google Scholar 

  132. Senturker S, Karahalil B, Inal M, Yilmaz H, Muslumanoglu H, Gedikoglu G, et al. Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Lett. 1997;416(3):286–90.

    CAS  PubMed  Google Scholar 

  133. Jaruga P, Zastawny TH, Skokowski J, Dizdaroglu M, Olinski R. Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett. 1994;341(1):59–64.

    CAS  PubMed  Google Scholar 

  134. Lovell MA, Gabbita SP, Markesbery WR. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem. 1999;72(2):771–6.

    CAS  PubMed  Google Scholar 

  135. Kulkarni A, Wilson DM 3rd. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet. 2008;82(3):539–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell. 2007;130(6):991–1004.

    CAS  PubMed  Google Scholar 

  137. Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA. DNA repair, mitochondria, and neurodegeneration. Neuroscience. 2007;145(4):1318–29.

    CAS  PubMed  Google Scholar 

  138. Wrona MZ, Dryhurst G. Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem Res Toxicol. 1998;11(6):639–50.

    CAS  PubMed  Google Scholar 

  139. Spencer JP, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, et al. Intense oxidative DNA damage promoted by L-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett. 1994;353(3):246–50.

    CAS  PubMed  Google Scholar 

  140. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115(8):E1876–E85.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ljungman M, Lane DP. Transcription - guarding the genome by sensing DNA damage. Nat Rev Cancer. 2004;4(9):727–37.

    CAS  PubMed  Google Scholar 

  143. Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep. 2016;18(5):21.

    PubMed  Google Scholar 

  144. Kyrgiou M, Kalliala I, Markozannes G, Gunter MJ, Paraskevaidis E, Gabra H, et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. Bmj. 2017;356:j477.

    PubMed  PubMed Central  Google Scholar 

  145. Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014;20(6):967–77.

    CAS  PubMed  Google Scholar 

  146. Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, LeBoeuf R, et al. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem. 2012;287(13):10379–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Setayesh T, Nersesyan A, Misik M, Ferk F, Langie S, Andrade VM, et al. Impact of obesity and overweight on DNA stability: few facts and many hypotheses. Mutat Res. 2018;777:64–91.

    CAS  PubMed  Google Scholar 

  148. Tyson J, Caple F, Spiers A, Burtle B, Daly AK, Williams EA, et al. Inter-individual variation in nucleotide excision repair in young adults: effects of age, adiposity, micronutrient supplementation and genotype. Br J Nutr. 2009;101(9):1316–23.

    CAS  PubMed  Google Scholar 

  149. Azzara A, Pirillo C, Giovannini C, Federico G, Scarpato R. Different repair kinetic of DSBs induced by mitomycin C in peripheral lymphocytes of obese and normal weight adolescents. Mutat Res. 2016;789:9–14.

    CAS  PubMed  Google Scholar 

  150. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83.

    CAS  PubMed  Google Scholar 

  151. Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, et al. DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes. 2016;65(10):3062–74.

    CAS  PubMed  Google Scholar 

  152. Wlodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci. 2019;20(5):1146.

    CAS  PubMed Central  Google Scholar 

  153. Usman M, Volpi EV. DNA damage in obesity: initiator, promoter and predictor of cancer. Mutat Res. 2018;778:23–37.

    CAS  PubMed  Google Scholar 

  154. Scherer PE, Hill JA. Obesity, diabetes, and cardiovascular diseases: a compendium. Circ Res. 2016;118(11):1703–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cerda C, Sanchez C, Climent B, Vazquez A, Iradi A, El Amrani F, et al. Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv Exp Med Biol. 2014;824:5–17.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant No. 2017/02564-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), financial code 001. This work was also supported under the International Collaboration Research Funding from Sao Paulo Research Foundation (FAPESP, SP, Brazil) and The Netherlands Organization for Scientific Research (NWO, The Netherlands), Grant No. 2019/19435-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels O. S. Câmara.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunometabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marconi, D., Ranfley, H., Menck, C.F.M. et al. Interface of DNA Repair and Metabolism. Curr. Tissue Microenviron. Rep. 1, 209–220 (2020). https://doi.org/10.1007/s43152-020-00018-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00018-5

Keywords

Navigation