Skip to main content
Log in

PGF2alpha Inhibits 20alpha-HSD Expression by Suppressing CK1alpha-induced ERK and SP1 Activation in the Corpus Luteum of Pregnant Mice

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during the experiment are available upon request from the corresponding author.

References

  1. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–49. https://doi.org/10.1210/er.2006-0022.

    Article  CAS  PubMed  Google Scholar 

  2. Bachelot A, Binart N. Corpus luteum development: lessons from genetic models in mice. Curr Top Dev Biol. 2005;68:49–84. https://doi.org/10.1016/S0070-2153(05)68003-9.

    Article  CAS  PubMed  Google Scholar 

  3. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80:1–29. https://doi.org/10.1152/physrev.2000.80.1.1.

    Article  CAS  PubMed  Google Scholar 

  4. Diaz FJ, Anderson LE, Wu YL, Rabot A, Tsai SJ, Wiltbank MC. Regulation of progesterone and prostaglandin F2alpha production in the CL. Mol Cell Endocrinol. 2002;191:65–80. https://doi.org/10.1016/s0303-7207(02)00056-4.

    Article  CAS  PubMed  Google Scholar 

  5. Strauss JF, Stambaugh RL. Induction of 20 alpha-hydroxysteroid dehydrogenase in rat corpora lutea of pregnancy by prostaglandin F-2 alpha. Prostaglandins. 1974;5:73–85. https://doi.org/10.1016/s0090-6980(74)80134-6.

    Article  CAS  PubMed  Google Scholar 

  6. Sugimoto Y, Yamasaki A, Segi E, Tsuboi K, Aze Y, Nishimura T, et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science. 1997;277:681–3. https://doi.org/10.1126/science.277.5326.681.

    Article  CAS  PubMed  Google Scholar 

  7. Reese J, Paria BC, Brown N, Zhao X, Morrow JD, Dey SK. Coordinated regulation of fetal and maternal prostaglandins directs successful birth and postnatal adaptation in the mouse. Proc Natl Acad Sci U S A. 2000;97:9759–64. https://doi.org/10.1073/pnas.97.17.9759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao J, Duan RW, Zhong L, Gibori G, Azhar S. Expression, purification and characterization of the rat luteal 20 alpha-hydroxysteroid dehydrogenase. Endocrinology. 1997;138:182–90. https://doi.org/10.1210/endo.138.1.4825.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn NJ, Briley MS. The roles of pregn-5-ene-3 beta, 20 alpha-diol and 20 alpha-hydroxy steroid dehydrogenase in the control of progesterone synthesis preceding parturition and lactogenesis in the rat. Biochem J. 1970;117:193–201. https://doi.org/10.1042/bj1170193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiest WG. On the function of 20 alpha-hydroxypregn-4-en-3-one during parturition in the rat. Endocrinology. 1968;83:1181–4. https://doi.org/10.1210/endo-83-6-1181.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong L, Parmer TG, Robertson MC, Gibori G. Prolactin-mediated inhibition of 20α-hydroxysteroid dehydrogenase gene expression and the tyrosine kinase system. Biochem Biophys Res Commun. 1997;235:587–92. https://doi.org/10.1006/bbrc.1997.6833.

    Article  CAS  PubMed  Google Scholar 

  12. Vashistha A, Khan HR, Rudraiah M. Role of cAMP/PKA/CREB pathway and β-arrestin 1 in LH induced luteolysis in pregnant rats. Reproduction. 2021;162:21–31. https://doi.org/10.1530/REP-20-0661.

    Article  CAS  PubMed  Google Scholar 

  13. Sugino N, Telleria CM, Gibori G. Progesterone inhibits 20alpha-hydroxysteroid dehydrogenase expression in the rat corpus luteum through the glucocorticoid receptor. Endocrinology. 1997;138:4497–500. https://doi.org/10.1210/endo.138.10.5572.

    Article  CAS  PubMed  Google Scholar 

  14. Stocco CO, Zhong L, Sugimoto Y, Ichikawa A, Lau LF, Gibori G. Prostaglandin F2alpha-induced expression of 20alpha-hydroxysteroid dehydrogenase involves the transcription factor NUR77. J Biol Chem. 2000;275:37202–11. https://doi.org/10.1074/jbc.M006016200.

    Article  CAS  PubMed  Google Scholar 

  15. Qi ST, Wang ZB, Huang L, Liang LF, Xian YX, Ouyang YC, et al. Casein kinase 1 (α, δ and ε) localize at the spindle poles, but may not be essential for mammalian oocyte meiotic progression. Cell Cycle. 2015;14:1675–85. https://doi.org/10.1080/15384101.2015.1030548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Würl PU, et al. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie. 2005;28:508–14. https://doi.org/10.1159/000087137.

    Article  CAS  PubMed  Google Scholar 

  17. Cheong JK, Virshup DM. Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol. 2011;43:465–9. https://doi.org/10.1016/j.biocel.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal. 2018;16:23. https://doi.org/10.1186/s12964-018-0236-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panchenko MP, Siddiquee Z, Dombkowski DM, Alekseyev YO, Lenburg ME, Walker JD, et al. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. Am J Pathol. 2010;177:1562–72. https://doi.org/10.2353/ajpath.2010.100327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu C, Zhang D, Zhang J, Li L, Qiu J, Gou K, et al. Casein kinase 1α regulates murine spermatogenesis via p53-Sox3 signaling. Development. 2022;149:dev200205. https://doi.org/10.1242/dev.200205

  21. Zhang D, Jiang Y, Luo X, Liu H, Zhou Y, Cui S. Oocyte Casein kinase 1α deletion causes defects in primordial follicle formation and oocyte loss by impairing oocyte meiosis and enhancing autophagy in developing mouse ovary. Cell Death Discov. 2022;8:388. https://doi.org/10.1038/s41420-022-01184-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Li J, Liu J, Luo H, Gou K, Cui S. Prostaglandin F2α upregulates Slit/Robo expression in mouse corpus luteum during luteolysis. J Endocrinol. 2013;218:299–310. https://doi.org/10.1530/JOE-13-0088.

    Article  CAS  PubMed  Google Scholar 

  23. Galosy SS, Talamantes F. Luteotropic actions of placental lactogens at midpregnancy in the mouse. Endocrinology. 1995;136:3993–4003. https://doi.org/10.1210/endo.136.9.7649108.

    Article  CAS  PubMed  Google Scholar 

  24. Järås M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211:605–12. https://doi.org/10.1084/jem.20131033.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol. 2010;6:829–36. https://doi.org/10.1038/nchembio.453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirabayashi K, Ishida M, Suzuki M, Yamanouchi K, Nishihara M. Characterization and functional analysis of the 5′-flanking region of the mouse 20α-hydroxysteroid dehydrogenase gene. Biochem J. 2004;382:975–80. https://doi.org/10.1042/BJ20040276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nadel G, Yao Z, Ben-Ami I, Naor Z, Seger R. Gq-induced apoptosis is mediated by AKT inhibition that leads to PKC-induced JNK activation. Cell Physiol Biochem. 2018;50:121–35. https://doi.org/10.1159/000493963.

    Article  CAS  PubMed  Google Scholar 

  28. Park SJ, Kim JH, Kim TS, Lee SR, Park JW, Lee S, et al. Peroxiredoxin 2 regulates PGF2α-induced corpus luteum regression in mice by inhibiting ROS-dependent JNK activation. Free Radic Biol Med. 2017;108:44–55. https://doi.org/10.1016/j.freeradbiomed.2017.03.013.

    Article  CAS  PubMed  Google Scholar 

  29. Nadel G, Yao Z, Wainstein E, Cohen I, Ben-Ami I, Schajnovitz A, et al. GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Commun Signal. 2022;20:5. https://doi.org/10.1186/s12964-021-00805-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tai CJ, Kang SK, Choi KC, Tzeng CR, Leung PC. Role of mitogen-activated protein kinase in prostaglandin F(2alpha) action in human granulosa-luteal cells. J Clin Endocrinol Metab. 2001;86:375–80. https://doi.org/10.1210/jcem.86.1.7159.

    Article  CAS  PubMed  Google Scholar 

  31. Arck P, Hansen PJ, Mulac Jericevic B, Piccinni MP, Szekeres-Bartho J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58:268–79. https://doi.org/10.1111/j.1600-0897.2007.00512.x.

    Article  CAS  PubMed  Google Scholar 

  32. Choi JH, Ishida M, Matsuwaki T, Yamanouchi K, Nishihara M. Involvement of 20α-hydroxysteroid dehydrogenase in the maintenance of pregnancy in mice. J Reprod Dev. 2008;54:408–12. https://doi.org/10.1262/jrd.20045.

    Article  CAS  PubMed  Google Scholar 

  33. Przygrodzka E, Plewes MR, Davis JS. Luteinizing hormone regulation of inter-organelle communication and fate of the corpus luteum. Int J Mol Sci. 2021;22:9972. https://doi.org/10.3390/ijms22189972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esmaeilian Y, Hela F, Bildik G, et al. Autophagy regulates sex steroid hormone synthesis through lysosomal degradation of lipid droplets in human ovary and testis. Cell Death Dis. 2023;14:342. https://doi.org/10.1038/s41419-023-05864-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang Z, Zhang Z, Zhang H, et al. Autophagy attenuation hampers progesterone synthesis during the development of pregnant corpus luteum. Cells. 2019;9:71. https://doi.org/10.3390/cells9010071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Q, Gao H, Yang F, et al. FSH promotes progesterone synthesis by enhancing autophagy to accelerate lipid droplet degradation in porcine granulosa cells. Front Cell Dev Biol. 2021;9:626927. https://doi.org/10.3389/fcell.2021.626927

  37. Smith MF, McIntush EW, Smith GW. Mechanisms Associated with Corpus Luteum Development. J Anim Sci. 1994;72:1857–72. https://doi.org/10.2527/1994.7271857x.

    Article  CAS  PubMed  Google Scholar 

  38. Chu S, Ferro TJ. Sp1: regulation of gene expression by phosphorylation. Gene. 2005;348:1–11. https://doi.org/10.1016/j.gene.2005.01.013.

    Article  CAS  PubMed  Google Scholar 

  39. Chu S. Transcriptional regulation by post-transcriptional modification–role of phosphorylation in Sp1 transcriptional activity. Gene. 2012;508:1–8. https://doi.org/10.1016/j.gene.2012.07.022.

    Article  CAS  PubMed  Google Scholar 

  40. Mir R, Sharma A, Pradhan SJ, Galande S. Regulation of transcription factor Sp1 by the β-catenin destruction complex modulates Wnt response. Mol Cell Biol. 2018;38:e00188-e218. https://doi.org/10.1128/MCB.00188-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonello MR, Khachigian LM. Fibroblast growth factor-2 represses platelet-derived growth factor receptor-alpha (PDGFR-alpha) transcription via ERK1/2-dependent Sp1 phosphorylation and an atypical cis-acting element in the proximal PDGFR-alpha promoter. J Biol Chem. 2004;279:2377–82. https://doi.org/10.1074/jbc.M308254200.

    Article  CAS  PubMed  Google Scholar 

  42. Chen XH, Lu LL, Ke HP, Liu ZC, Wang HF, Wei W, et al. The TGF-β-induced up-regulation of NKG2DLs requires AKT/GSK-3β-mediated stabilization of SP1. J Cell Mol Med. 2017;21:860–70. https://doi.org/10.1111/jcmm.13025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dang F, Nie L, Zhou J, Shimizu K, Chu C, Wu Z, et al. Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nat Commun. 2021;12:5386. https://doi.org/10.1038/s41467-021-25700-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang S, Kim KH. Protein kinase CK2 down-regulates glucose-activated expression of the acetyl-CoA carboxylase gene. Arch Biochem Biophys. 1997;338:227–32. https://doi.org/10.1006/abbi.1996.9809.

    Article  CAS  PubMed  Google Scholar 

  45. Vila J, Walker JM, Itarte E, Weber MJ, Sando JJ. Phosphorylation of protein kinase C by casein kinase-1. FEBS Lett. 1989;255:205–8. https://doi.org/10.1016/0014-5793(89)81092-0.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC. Differential molecular assemblies underlie the dual function of axin in modulating the Wnt and JNK pathways. J Biol Chem. 2001;276:32152–9. https://doi.org/10.1074/jbc.M104451200.

    Article  CAS  PubMed  Google Scholar 

  47. Lee WH, Lee HH, Vo MT, Kim HJ, Ko MS, Im YC, et al. Casein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin. J Biol Chem. 2011;286:21577–87. https://doi.org/10.1074/jbc.M110.201137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK. CK2 Is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol. 2007;17:179–84. https://doi.org/10.1016/j.cub.2006.11.061.

    Article  CAS  PubMed  Google Scholar 

  49. Plotnikov A, Chuderland D, Karamansha Y, Livnah O, Seger R. Nuclear ERK translocation is mediated by protein kinase CK2 and accelerated by autophosphorylation. Cell Physiol Biochem. 2019;53:366–387. https://doi.org/10.33594/000000144

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (32130098) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Qiao Gao, Di Zhang and Sheng Cui provided the experimental ideas and designed the experiments; Qiao Gao, Bing-Jie Wang and Chen-Yang Lu performed the experiments; Qiao Gao, Jing-Lin Zhang, Bing-Jie Wang and Chen-Yang Lu analysed the experimental data; Qiao Gao and Sheng Cui drafted the original manuscript.

Corresponding author

Correspondence to Sheng Cui.

Ethics declarations

Declarations

The animal experiments were approved by the Experimental Animal Welfare and Animal Experiment Ethics Review Committee of the China Agricultural University (Issue No. AW11402202-3–3).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 987 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhang, D., Zhang, JL. et al. PGF2alpha Inhibits 20alpha-HSD Expression by Suppressing CK1alpha-induced ERK and SP1 Activation in the Corpus Luteum of Pregnant Mice. Reprod. Sci. 31, 248–259 (2024). https://doi.org/10.1007/s43032-023-01322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01322-9

Keywords

Navigation